Китайские светодиоды 5730. Хорошие и не очень

  1. Всё о видах светодиодов
  2. Главные три типа светодиодов
  3. Выводные светодиоды SMD-светодиоды COB-светодиоды

  4. Основные параметры светодиодов в светодиодных лампах, ленте, светильниках
  5. Ток Напряжение Мощность Световой поток Цветовая температура Габариты

  6. Виды SMD светодиодов и их особенности
  7. Одно-, двух-, трехкристальные SMD светодиоды Цвет свечения Типоразмер

  8. Рейтинг SMD-светодиодов
  9. Как правильно расшифровать маркировку?
  10. Как определить светодиод по внешнему виду? Как определить полярность светодиода?

  11. Достоинства и недостатки светодиодов

Эта статья раскрывает секреты светодиодов, которые известны только профильным специалистам. Вы узнаете какие виды led выпускаются промышленностью, познакомитесь с технологиями их изготовления и характеристиками. Отдельный раздел посвящен особенностям модельного ряда светодиодов, применяемых в лед-лентах и светильниках.

Мы расскажем как распознать маркировку светоизлучающих диодов, как узнать параметры светодиода, определить расположение анода/катода по малозаметным признакам. Вы убедитесь, что обычная линейка поможет узнать типоразмер smd-диода и затем найти о нем необходимую информацию.

Всё о видах светодиодов

Вначале светодиоды применялись лишь в качестве индикаторов на аппаратуре и оборудовании. Яркость индикаторных светоизлучающих диодов была невелика, и их свечение было хорошо заметно только в темноте. Изделия отличались выводной конструкцией – из круглого корпуса выходили два вывода (анод и катод).

С развитием технологий и появлением потребности в альтернативных источниках света появились более мощные и яркие диоды. Результатом многолетних разработок стали SMD-диоды и многокристальные COB-диоды. Они используются в современных лед-светильниках, люстрах и прожекторах, выгодно отличаясь от ламп накаливания и галогеновых большей светоотдачей и яркостью, достигающей нескольких тысяч люменов.

Главные три типа светодиодов

Рассмотрим более подробно основные виды светоизлучающих диодов, имеющие различное конструктивное исполнение и производимые по разной технологии.

Выводные светодиоды

Для выводных светодиодов характерно наличие, так называемых, «ножек», предназначенных для их монтажа в отверстиях печатной платы. Этот тип продукции применяется для индикации и подсветки.

Отдельные модификации используются в бытовых фонарях, переносных лед-светильниках, «лазерных» указках. Встречаются 3 типовых модификации корпусов:

Круглой формы 3, 5, 8 мм

Прямоугольные светодиоды «Пиранья»

Цилиндрические светодиоды

SMD светодиоды

SMD светодиоды устанавливаются на плату методом поверхностного монтажа. Их основой является светодиодный чип (кристалл), размещенный в прямоугольном или квадратном корпусе. Плюсовой и минусовой выводы выполнены в виде металлических полосок.

Процесс создания СМД-диода состоит из четырех этапов: выращиванию кристалла, планарной обработки пленки, бинирования (сортировки чипов по категориям – бинам), размещения полученных чипов в специализированный корпус. Кристаллы выращиваются при помощи технологии, использующей металлоорганическую эпитаксию: послойное наращивание кристаллической структуры и создание контактных отводов от каждого p-n перехода.

Выращенные кристаллы размещаются на подложке, отводящей излишки тепла. При наличии эффективного теплоотвода даже мощные модели работают в стабильном рабочем режиме. Срок беспроблемной службы составляет несколько лет.

На поверхность готовых чипов наносят один из вариантов оптического покрытия, чаще всего люминофор. На мощных светоизлучающих диодах монтируют пластиковую фокусирующую линзу, формирующую диаграмму направленности светового потока.

Светодиодные светильники комплектуются сборкой SMD-диодов, обеспечивающей требуемую величину светового излучения, измеряемую в люменах.

COB-светодиоды

Идея COB-матрицы состоит в размещении большого числа светодиодных элементов на общей подложке. Такое решение обеспечивает более высокую плотность кристаллов на единицу площади по сравнению с SMD-технологией (дискретные чипы в отдельных корпусах).

В итоге компактная матрица излучает суммарный световой поток с лучшей интенсивностью и однородностью. Керамическая или алюминиевая подложка с диодами герметично заливается люминофором. Для отвода излишков тепла готовая плата устанавливается на радиатор.

COB-диоды соединяются последовательно в кластеры. При питании 9 вольт – 3 штуки, 12 вольт – 4 штуки. Рабочий ток нормируется, исходя из вида используемых кристаллов. Соединение созданных кластерных цепочек выполняется параллельно в соответствии с требуемой выходной мощностью/яркостью.

Мигающие светодиоды: назначение, описание

Часто на прилавках магазинов, торгующих радиодеталями, можно встретить мигающие светодиоды. Они бывают различными по силе и по цвету свечения. Мигающие светодиоды (МСД) представляют собой полупроводниковые элементы со встроенными интегральными генераторами импульсов, частота вспышек которых составляет 1,5-3Гц.

Многие радиолюбители считают, что эти приборы бесполезны и их лучше заменить более дешевыми индикаторными светодиодами. Возможно, в чем-то они и правы. Однако МСД тоже имеют право на существование. Попробуем разобраться, в чем же преимущества таких изделий.

Мигающие светодиоды, по сути, представляют собой завершенные функциональные устройства, основное назначение которых – привлечение внимания, то есть функция световой сигнализации. Стоит также отметить, что мигающие полупроводниковые элементы размерами не отличаются от стандартных индикаторных светодиодов. Однако, несмотря на компактные размеры, в МСД входят полупроводниковые чип-генераторы, а также некоторые дополнительные элементы. Если конструировать генератор импульсов на обычных радиокомпонентах, то эта конструкция имела бы довольно солидные размеры. Стоит отметить, что мигающие светодиоды довольно универсальны. Питающее напряжение таких элементов лежит в пределах 1,8-5 В для низковольтных приборов и 3-14 В для высоковольтных. На фото ниже приведен мигающий светодиод 12 вольт.

Достоинства МСД:

— широкий диапазон питающего напряжения (до 14 вольт);

— малые габаритные размеры;

— довольно компактное устройство световой сигнализации;

— различные цвета излучения. Некоторые варианты мигающих светодиодов имеют несколько встроенных цветовых диодов с различной периодичностью вспышек (на фото представлен мигающий желтый светодиод);

— использование МСД оправдано в малых устройствах, в которых предъявляются жесткие требования к размерам элементной базы и потреблению электроэнергии. Эти диоды, благодаря своей электронной схеме, собранной на МОП структурах, имеют низкое потребление тока при достаточно большой мощности свечения;

— мигающий полупроводниковый прибор может заменить даже функциональный узел.

На принципиальных схемах графическое изображение МСД отличается от обычного светодиода только пунктирными линиями стрелок, что символизирует мигающие свойства элемента.

Давайте рассмотрим более подробно конструкцию мигающих светодиодов. Сквозь прозрачный корпус элемента можно увидеть, что конструктивно диод состоит из двух частей. Светоизлучающий кристалл размещен на основании катодного (отрицательного) электрода, а чип-генератор находится на основании анода (положительного электрода). Все части этого устройства соединены тремя золотыми перемычками. Чип-генератор представляет собой высокочастотный задающий генератор, который работает постоянно, его частота колеблется в районе 100 кГц. Также на схеме мигающего диода присутствует делитель, собранный на логических элементах. Он делит значение высокой частоты до уровня 1,5-3 Гц. Вы можете спросить: «А для чего используется высокочастотный генератор с делителем, почему нельзя было использовать низкочастотный генератор, и тем самым упростить конструкцию?» Это связано с тем, что для реализации генератора низкой частоты требуется наличие конденсатора большой емкости для времяопределяющей цепи. Для реализации такого конденсатора понадобилась бы площадь гораздо большего размера, чем под использование высокочастотного генератора.

Вот мы и рассмотрели, что же представляет собой мигающий светодиод. А на вопрос о том, что лучше — технология МСД или традиционных индикаторных диодов, ответим, что несмотря на дешевизну вторых, мигающие диоды также нашли свою сферу применения и не составляют конкуренции традиционным.

Основные параметры светодиодов в светодиодных лампах, ленте, светильниках

При выборе светотехнического устройства необходимо принимать во внимание параметры установленных в нем светоизлучающих диодов. Рассмотрим главные характеристики.

Ток

Однокристальные светодиоды имеют среднюю величину рабочего тока в пределах 200 mA. В многокристальных чипах ток соответственно выше. Нестабильность тока, выдаваемого драйвером (блоком питания), негативно сказывается на интенсивности свечения и длительности службы. Увеличение тока является причиной повышения цветовой температуры и оттенка свечения чипа.

Напряжение

Для электропитания светодиодов используются специальные драйверы, обеспечивающие стабильность тока. Напряжение «плавает» в границах, отличающихся для различных моделей. В таблице ниже можно посмотреть виды светодиодов по напряжению.

ЦветДлина волныНапряжение
Инфракрасныйот 769 нмдо 1.9 В
Красный610-760 нмот 1.6 до 2.03 В
Оранжевый590-610 нмот 2.03 до 2.1 В
Желтый570-590 нмот 2.1 до 2.2 В
Зеленый500-570 нмот 2.2 до 3.5 В
Синий450-500 нмот 2.5 до 3.7 В
Фиолетовый400-450 нмот 2.8 до 4 В
УльтраФиолетовыйдо 400 нмот 3.1 до 4.4 В
Белыйширокий спектрот 3 до 3.7 В

А вот светодиодная лента запитывается стабилизированным напряжением. Токовая характеристика задается токоограничивающими резисторами.

Мощность

Этот параметр требуется для расчета нагрузки и подбора блока электропитания. Он вычисляется с помощью простой формулы P = U х I.

Мощность led может быть:

  • малой – менее 0,5 ватт;
  • средней – 0,5-3 ватта;
  • большой – от 3 ватт.

Световой поток

Светодиоды формируют световой поток с углом рассеивания 100-120 градусов. Для лучшей фокусировки излучения устанавливаются специальные купольные линзы.

Цветовая температура

От цветовой температуры светового излучения зависит комфортность зрительного восприятия искусственного светодиодного освещения. В продаже представлены линейки светоизлучающих диодов с разным оттенком белого свечения:

  • 2700-3500 Кельвинов – теплое;
  • 23500-5000 Кельвинов – нейтральное/дневное;
  • выше 5000 Кельвинов – холодное.

Габариты

Светодиоды различаются по типоразмеру и габаритам. Измерение длины и ширины изделия позволяет точно определить модификацию SMD-светодиода.

Виды SMD светодиодов и их особенности

Рассмотрим классификацию СМД-диодов по особенностям исполнения, а также наиболее популярные модели, используемые в разнообразной светотехнической продукции.

Одно-, двух-, трехкристальные SMD светодиоды

Однокристальные – состоят из одного монохромного кристалла и отличаются уровнем мощности/яркости. Маломощные модели потребляют ток до 20 мА и выдают световой поток величиной 5-50mCd и 100-2000mCd в зависимости от модификации. Кристалл закрывается линзой, имеющей плоскую или сферическую форму. Для работы более мощных светодиодов требуется ток 50 мА — 1 А и конструкция с эффективным теплоотводом.

Многокристальные – содержат разное число кристаллов, позволяющее обеспечивать нужную яркость и цветовую палитру свечения. Значение рабочего напряжения бывает различным и нормируется производителями. Например, продукция компании Cree работает при электропитании 6-72 В с мощностью до 25 Вт.

Цвет свечения

Светодиоды выпускаются в 2 разновидностях, отличающихся способом цветообразования:

  • одноцветные – на базе однокристальных чипов, излучающих свечение белого, желтого и других основных цветов;
  • мультицветные – имеют трех кристальную структуру, состоящую из чипов, которые светятся красным/зеленым/синим цветом. Эти базовые цвета микшируются, позволяя создавать сотни цветовых оттенков. Световые потоки от 3 кристаллов объединяются в единый световой пучок при помощи оптической линзы или без нее за счет их пространственного сложения. Для регулировки цветовой палитры и яркости применяется RGB контроллер.

Типоразмер

Типоразмеры смд-диодов кодируются четырехзначным числом, обозначающим их линейные размеры. Вот наиболее распространенные варианты:

SMD3528

– маломощная модель, имеющая низкую энергоэффективность. Экономичное по цене решение для неярких светодиодных лент. Прямоугольный корпус размером 3,5х2,8х1,4 мм.

SMD5050

– чип из 3 кристаллов 3528 с зеленым, красным, синим свечением и втрое увеличенной суммарной яркостью. Габариты 5,0х5,0х1,6 мм. Квадратный корпус с шестью выводами.

SMD2835

– однокристальный чип с небольшим энергопотреблением при довольно высокой мощности. Размер 2,8х3,5х0,8 мм. Увеличение площади контактов позволило улучшить отвод тепла. Слой люминофорного покрытия увеличивает интенсивность светового потока.

SMD5630

– разновидность мощного светоизлучающего прибора с высокой яркостью. Размер 5,6х3,0х0,77 мм. Оснащен четырьмя выводами.

SMD5730

– является практически полным аналогом предыдущей модели. Встречаются модификации 5730-05 и 5730-1.

SMD3014

– вариация мощного led-источника с величиной светового пучка 9-11 люменов. Выпускаются на базе чипов, имеющих различное число кристаллов. Увеличенная площадь теплоотводящей подложки способствует эффективному отводу тепловой энергии.

Можно встретить смд-светодиоды типоразмера 3030, 7020, 8520, используемые гораздо реже. Производители периодически выпускают на рынок новые светодиоды, параметры и характеристики которых значительно отличаются. Задача как определить параметры светодиода решается аналогично другим моделям.

Как подключить светодиод, чтобы мигал

Простейшая схема

Первая схема используется давно. В СССР уже известна и базируется на лавинном пробое перехода коллектор-эмиттер биполярного транзистора. Конденсатор заряжается от сети, и напряжение делится между светодиодом и полупроводниковым ключом. Номиналы резистора и конденсатора определяют постоянную времени заряда и, как следствие, частоту мигания.

Лавинный пробой подобен электрической дуге и демонстрирует отрицательное дифференциальное сопротивление. Пока заряд на конденсаторе падает, светодиод спокойно работает. Наконец, разница потенциалов достигает некоего порога, p-n-переход закрывается. Точнее, между эмиттером и коллектором два p-n-перехода. Из сказанного следует, что транзистор возможно заменить любым нелинейным элементом, демонстрирующим вольт-амперную характеристику с отрицательным дифференциальным сопротивлением. В указанную группу попадают лавинные и туннельные диоды.

Большинство биполярных транзисторов демонстрируют нужную характеристику. Выбирается тот, предельное обратное напряжение эмиттер-коллектор которого меньше приложенного питания. Лавинный пробой проще наблюдается на эмиттерном переходе. Соответственно, его потребуется включать в обратном направлении.

Схемы генераторов

В интернете обсуждается схема на мультивибраторе. Выделяются прочие генераторы, полезные простотой сбора и наладки. Релейные устройства применяются и поныне. Их относят к классу контактных генераторов, обозначая наличие движущихся частей.

Пульс-пара, построенная из двух реле, обнаруживает простое достоинство – очевидную работу, устройств измерений для отладки не требуется. На рисунке изображён возможный вариант реализации схемы на электромагнитных размыкающем и замыкающем реле. В начальный момент времени питание подаётся через контакт 2П на катушку 1П. В результате первое реле замыкается. 2П получает питание и:

  1. Разрывает свои контакты в выходной цепи, где стоит светодиод. Он гаснет.
  2. Перестаёт питать 1П.

Пропадает питание на реле 1П, оно открывается. В результате нормально замкнутые контакты 2П возвращают питание светодиоду и 1П. Схема откатывается в исходное состояние, начинается новый цикл работы. Скорость переключения определяется целиком характеристиками реле. Для дополнительной регулировки допустимо добавить в схему задерживающие срабатывание элементы.

На втором рисунке показан генератор, массово использовавшийся в технике. Состоит из пульс-пары, режим работы рассмотрен выше, и вспомогательного реле, с задачей задержки по времени. Кнопки управления (КУ) задают нужные параметры.

При нажатии КП устройство включается в работу. Щётки шагового искателя (ШИ) переходят с ламели на ламель. Выполняется переключение. Вначале через ламель 0, кнопку и катушку 1П потенциал подаётся на реле 1П. Оно срабатывает и выполняет действия:

  • Обрывает цепь питания катушки 2П, где прежде тёк ток.
  • Готовит реле Д к срабатыванию.

При переходе щётки на ламель 1 реле 1П обесточивается, 2П размыкает свои контакты. Реле 1П отпадает. Включается 2П, подавая питание на 1П. Круг замыкается. На втором контакте 2П подключён светодиод, начинающий мигать.

Если нажата КУ, щётка ШИ попадает на вторую ламель, и при включенном 1П сработает реле Д. Последнее на время замедлит переключение 2П. В таком случае светодиод временно перестанет моргать, период удлинится.

Схема на мультивибраторе

Мультивибраторами называют транзисторные генераторы прямоугольных импульсов. В силу особенностей силовые элементы чаще выбираются биполярные. По классификации мультивибраторы относятся к бесконтактным генераторам и часто применяются для питания светодиодов, заставляя мигать.

Транзисторы достать проще, нежели специализированные микросхемы, что обусловливает популярность предлагаемого технического решения. Бесконтактные генераторы отличаются большим сроком службы, а скорость переключения настраивается выбором номиналов пассивных элементов. Мультивибраторы производят импульсы прямоугольной формы. Впрочем, аналогичное говорится о контактных генераторах. В рассматриваемом случае это хорошо.

По схеме на базу первого транзистора через конденсатор подаётся напряжение коллектора второго, открывая ключ. В этот момент происходят одновременно два процесса:

  1. Управляющий конденсатор разряжается через крайний резистор и переход эмиттер-база противоположного транзистора.
  2. Через его коллектор и внутренний резистор заряжается другой конденсатор.

Схема работает, как качели, что, впрочем, характерно для любых генераторов прямоугольных импульсов. Номиналами С и R допустимо изменять период колебания и скважность. Последнее достигается в несимметричной схеме.

Генераторы на микросхемах

Таймер на микросхеме серии 555 позволяет простыми путями заставить светодиод мигать. Для этого радиолюбители используют стандартную батарейку на 9 вольт. Несколько резисторов, микросхема и конденсатор – все, что понадобится в описанной ситуации. Как и ранее, постоянная времени задаётся размерами пассивных элементов конденсатора. Для отладки схемы возможно использовать подстроечную или переменную ёмкость.

Рейтинг SMD-светодиодов

МестоПроизводительСтранаОсобенности продукции
1CREEСШАИспользование высокоэффективных материалов InGaN с запатентованной подложкой G SIC ®
2NICHIAЯпонияСлужит калибровочным эталоном световых и излучаемых величин для светодиодных изделий, применяемым в Национальном институте передовых промышленных наук и технологий (AIST). Отличается равномерным пространственным распределением света, отличной температурной стабильностью и воспроизводимостью освещения
3TOYODA GOSEIЯпонияИзвестна светодиодом, воспроизводящим свет на 99% приближенный к солнечному. Разрабатывает модули глубокого ультрафиолетового света, эффективного в борьбе с вирусами и бактериями
4OSRAMГерманияМного инновационных разработок, таких как светодиоды UV-C, излучающие в УФ-спектре и способные обеззараживать воздух, воду, рабочие поверхности. Производит светоизлучающие диоды практически всех видов
5LumiledsЕвропаСлавится высоким качеством, благодаря строгому контролю материалов и технологических процессов, всестороннему тестированию готовых изделий

Как правильно расшифровать маркировку?

Маркировка смд светодиодов предоставляет пользователю краткую информацию об изделиях. Например, перед нами светоизлучающий диод, маркированный SMD 2835 UWC 5. Расшифровываем: типоразмер 2835 с габаритами 2,8×3,5 мм, мощностью 0,5 Вт, белый оттенок свечения.

Тип SMDКол-во кристалловГабариты, мм
352813,5х2,8х1,4
50503 / 45х5х1,6
563015,6х3х0,75
57301 / 25,7х3х0,75
301413х1,4х0,75
283512,8х3,5х0,8

Как определить светодиод по внешнему виду?

Измеряете габариты диода с помощью любой линейки. Ищете размеры в таблице, определяете тип изделия и смотрите его характеристики.

Тип SMDКол-во кристалловГабариты, ммМощность, ВтТок, мАСветопоток, Лм
352813,5х2,8х1,40,02 / 0,06205-7
50503 / 45х5х1,60,0260 / 8018-20
563015,6х3х0,750,2-0,415058
57301 / 25,7х3х0,750,5 / 1150 / 30050 / 158
301413х1,4х0,750,1-0,12309-13
283512,8х3,5х0,80,2 / 0,5 / 160 / 150 / 30020 / 50 / 100

Как определить полярность светодиода?

В прозрачном корпусе выводного светодиода можно увидеть анод и катод характерной формы.

На SMD-корпусах виден угловой срез, указывающий на катодный вывод. На тыльной стороне размещена площадка теплоотвода, смещенная в сторону анода.

Еще одним указателем полярности являются пиктограммы: треугольник, буквы П и Т. Направление буквенных выступов и вершины треугольника указывает на катод.

Виды белых светодиодов

В зависимости от принципа работы бывают два типа белых светодиодов:

  • люминофорные;
  • многокристальные.

Помимо этого они отличаются по мощности, цветовой температуре, размерам, углу рассеивания света и т. д. Наиболее распространенными среди белых чиповых светодиодов являются тонкие пластинки размером 5мм на 5мм или 3,5мм на 2,8мм, но встречаются меньшие и большие размеры.

Каждый производитель указывает на его взгляд самые необходимые характеристики, но в них всегда входят электрические и цветовые параметры.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]