Сегодня применение цемента достаточно широко – несмотря на появление новых строительных материалов, бетон на основе цементного вяжущего по-прежнему считается самым популярным, универсальным и предпочтительным во многих случаях вариантом. Цемент представляет собой порошкообразное вещество, относящееся к классу неорганических.
Цемент производят при помоле клинкера, который, в свою очередь, получают путем обжига при высоких температурах глины и извести, взятых в определенных пропорциях. К порошку могут добавляться различные минеральные вещества, пластификаторы для улучшения свойств и т.д. Цемент используют в виде вяжущего при замесе бетонных растворов разного типа и назначения.
Главная функция цемента – качественное скрепление конструктивных элементов создаваемых конструкций и возводимых зданий. Бетонные растворы используют для заливки полов и разных конструкционных элементов, монолитного строительства, производства тех или иных изделий и т.д.
Как работает любой вид цемента:
- При затворении водой превращается в вязкую пасту.
- Цвет меняется со светло-серого на темный.
- Бетон быстро набирает твердость во влажной и теплой воздушной среде.
Смесь в течение 28 дней (как правило) набирает прочность и постепенно превращается в искусственный камень с очень высокими характеристиками прочности, стойкости. Свойства цемента могут быть разными, зависят от массы факторов: вида самого вяжущего, наличия добавок, особенностей и условий применения, соблюдения технологии замеса и укладки.
Основные показатели, которые учитывают при выборе цемента:
- Прочность – обозначается маркой и буквой М (чем выше рядом число, тем выше прочность: к примеру, М400 говорит о том, что камень может выдержать нагрузку в 400 кг/см2). Также считается в классах (буква В и рядом двухзначное число, которое отображает нагрузку, что может выдержать материал, в МПа).
- Морозостойкость – важная характеристика, считается в количестве циклов заморозки/оттаивания.
- Стойкость к коррозии – способность противостоять негативному влиянию окружающей среды. Самый стойкий пуццолановый цемент, его используют для возведения подземных/подводных объектов.
- Водостойкость – способность схватываться в воде, а также выдерживать при необходимости воздействие воды и влаги.
- Сульфатостойкость – способность выдерживать воздействие воды с сульфат-ионами, что важно при строительстве гидросооружений, которые соприкасаются с соленой водой.
- Тонкость помола – оказывает влияние на период затвердевания и прочность. Чем более мелко смолот порошок, тем прочнее получится бетон.
Дополнительные свойства могут обеспечиваться специальными добавками в составе порошка, объем которых производитель всегда указывает на упаковке в маркировке и описании.
Производство цемента
Все разновидности цемента производятся по одной технологии. Могут отличаться составляющие и их пропорции, добавляться какие-то минеральные и другие вещества в конце, но само производство всегда предполагает определенные этапы и действия. Все современные смеси составляются на базе портландцемента.
Упрощенное описание технологии производства цемента:
- Получение первичного сырья: перемолотый известняк и глина смешиваются в шлам в пропорции 4:1.
- В процессе обжига шлама при температуре +1500 градусов по Цельсию сырье спекают в твердую массу, которая называется клинкер.
- Клинкер очень мелко смалывается до состояния порошка.
К клинкерному порошку добавляют минеральные присадки, гипс, чтобы получить цемент с нужными свойствами.
Состав
В составе цемента работают несколько составляющих на молекулярном уровне. Материал представляет собой тонкий порошок серого цвета, а вот компоненты в его химической формуле есть разные и отвечают за те или иные процессы в бетоне.
Какие вещества содержит цемент:
- Кальциевый оксид – в объеме около 67%.
- Кремниевый оксид – в объеме до 22%.
- Алюминиевые окиси – до 5%.
- Оксид железа – в объеме до 3%.
- Разного типа модифицирующие компоненты – максимум 3%.
Материалы, составляющие основу цемента:
- Клинкер из глины и извести – от его качества зависят прочность и другие свойства материала.
- Минеральные компоненты – специальные добавки для улучшения характеристик, расширения сферы использования цемента. Это могут быть измельченные сланцевые материалы, гранулированные шлаки, пуццолановые ингредиенты, известь и т.д.
- Вспомогательные компоненты с сульфатом кальция – для регулирования особенностей прохождения процесса гидратации.
- Специальные присадки – синтетические компоненты, повышающие стойкость к кислотам, температурам, агрессивным средам, щелочам.
Портландцемент отличается по составу не только из-за добавления в него компонентов в процессе производства, но и из-за особенностей мест добычи сырья. Так, в каждом регионе цемент другой, хоть и отличия несущественные.
Варианты составов материала:
- Разные виды глины (включая глинистый сланец и лесс).
- Мергель, известняк, мел, другие карбонатные породы.
- Минеральные присадки: кремнеземы, глиноземы, апатит, флюорит, плавиковый шпат, гипс, фосфогипс и т.д.
Прочность
Прочность является одним из самых важных свойств цемента, которое определяет сферу применения, предполагаемые нагрузки, технические характеристики конструкции из бетонного монолита. Нормативную прочность на сжатие цемент приобретает по прошествии 28 дней с момента затворения.
Прочность можно посмотреть по марке (самые популярные марки цемента М300, М400 и М500, указывают на прочность в кг/см2) и классу (указанным маркам соответствуют примерные показатели В20, В30 и В40). Приготовленный раствор твердеть начинает в течение 1-2 часов, завершается процесс минимум через 12 часов после укладки.
Далее появляется гидратационное тепло и бетон набирает прочность в течение 28 суток. При низких наружных температурах тепло позволяет цементу набрать полный цикл прочности, при высоких – может спровоцировать ускорение прохождения реакции, в результате чего распространяются трещины из-за появления температурных напряжений.
Прочность цемента смотрят на упаковке и в специальных таблицах, для каждой сферы и типа конструкции, определенной нагрузки ищется оптимальный показатель. На прочность влияет также соблюдение технологии замешивания раствора, укладки, ухода после.
Свойства цементов
Нормальная густота
. В отличие от других строительных материалов цемент испытывают в гидратиро-ванном состоянии в виде теста либо песчаного раствора. Поэтому на результаты испытаний влияют не только физико-химическая характеристика вяжущего, но также содержание и особенности всех применяемых при испытании материалов: воды, песка, специальных добавок. Кроме того, большое значение имеют способы приготовления цементного теста либо раствора и условия, в которых протекают процессы твердения. Большое внимание необходимо уделять подбору количества воды для затворения цемента. При испытании по ГОСТ определяют нормальную густоту цемента, измеряя глубину погружения стандартного пестика. Нормальная густота цементного теста характеризует количество воды затворения в % массы цемента и составляет для портландцемента примерно 22—28%. Она зависит от химико-минералогического состава клинкера, удельной поверхности цемента, содержания в нем допускаемой ГОСТ добавки трепела либо доменного шлака до 20% и некоторых других факторов. Сроки схватывания и равномерность изменения объема определяют в цементном тесте нормальной густоты.
Скорость схватывания
. Портландцемент, затворенный количеством воды, установленным при определении его нормальной густоты, образует подвижное пластичное тесто, которое в зависимости от химико-минералогической характеристики клинкера, удельной поверхности и вещественного состава цемента постепенно в течение нескольких часов теряет подвижность, превращаясь в плотное тело. Во время перемешивания теста контакты, возникшие между гидрат-ными новообразованиями коллоидных фракций цемента, нарушаются, и тесто сохраняет подвижность несмотря на постепенное нарастание связности. Чем дольше длится гидратация, тем больше становится гидратных новообразований и выше плотность структуры. Время, в течение которого образуется непрерывно уплотняющаяся и коагуляционная структура, является периодом схватывания, т. е. формирования структуры. Таким образом, схватывание цемента следует рассматривать как первоначальную стадию общего процесса твердения. По ГОСТ начало схватывания должно наступать не ранее 45 мни н заканчиваться не позднее 12 ч с момента затворения. Нормальные сроки схватывания портландцемента достигаются при совместном помоле клинкера с добавкой подобранного количества гипса, при котором содержание S03 в цементе должно быть не меньше 1,5%и не выше 3,5%. При большей добавке гипса возможно ускорение схватывания. Замедление схватывания цемента наступает вследствие того, что на поверхности цементных зерен откладываются тончайшие пленки геля гидросульфоалюмината кальция, быстро образующегося в результате взаимодействия сульфата кальция с трехкальциевым алюминатом. Эти гелевые пленки сдерживают диффузию воды к цементному зерну, что снижает скорость гидратации Вследствие исключительно высокой дисперсности образующегося геля гидросульфоалюмината кальция его трудно обнаружить под микроскопом. Замедлителями могут быть также полуводный гипс и безводный сульфат кальция (ангидрит); эффективность их действия связана с разной степенью растворимости. При использовании природного ангидрита образование в уже полностью затвердевшем цементе гидросульфоалюмината кальция вследствие запоздалой (медленной) растворимости ангидрита может привести к возникновению весьма опасных напряжений в цементном камне, так как увеличивается объем кристаллизующегося гидросульфоалюмината кальция. При избыточном содержании гипса также возможно появление опасных напряжений в хорошо затвердевшем цементе вследствие продолжающейся реакции образования гидросульфоалюмината кальция. Большое значение при выборе добавки гипса имеет удельная поверхность и зерновой состав цемента, причем в цементы с повышенным содержанием щелочей следует вводить относительно больше добавки. У средне- и высокоалюминатных цементов несколько большая добавка гипса вызывает повышение прочности в первые дни твердения и уменьшение усадки и расширения. Характерно, что добавка гипса может даже ускорить схватывание низкоалюминатных, богатых алюмоферритами кальция цементов, причем в этом случае не наблюдается тенденция к повышению первоначальной прочности и к уменьшению объемных изменений. Оптимальная добавка гипса для каждого цемента может быть установлена только на основе данных экспериментальных помолов цементов в заводских помольных агрегатах с характерной для них системой аспирации, температурами измалываемого цемента, его гранулометрическим составом и др. Ложное схватывание. Иногда происходит так называемое ложное схватывание цемента, характеризующееся тем, что цементное тесто схватывается преждевременно с большим выделением тепла. Однако при дальнейшем перемешивании тесто разжижается и схватывается уже нормально. Такое явление объясняют тем, что при помоле горячего клинкера, особенно в мельницах открытого цикла, температура цемента повышается иногда до 150°С и выше. Это вызывает дегидратацию гипса с образованием не только полугидрата, но и полностью обезвоженного сульфата кальция — ангидрита в растворимой форме. Быстрая гидратация ангидрита и полуводного гипса сопровождается преждевременным загустеванием цементного теста, которое при дальнейшем перемешивании разжижается. Ложное схватывание цемента может вызвать быструю потерю пластичности бетонной смеси во время перемешивания либо перевозки к месту потребления. Его можно предупредить глубоким охлаждением клинкера, помолом его, преимущественно в сепараторных мельницах, либо охлаждением корпуса мельниц открытого цикла, сильной аспирацией, а также подачей распыленной водновоздушной смеси в последнюю камеру мельницы. Испытание цемента на ложное схватывание заключается в видоизменении стандартного определения нормальной густоты цементного теста с повторением испытания через короткие интервалы — 3—5 мин с промежуточным перемешиванием. На скорость ложного схватывания бетонной смеси влияют температура, условия и время перемешивания, вид заполнителя и др. Возможна локализация явлений ложного схватывания цемента путем введения небольшой добавки СДБ, гипса либо минерального масла. Однако не у всех цементов даже при высокой температуре их измельчения наступает ложное схватывание. Полагают, что оно может быть вызвано наличием большого количества свободной извести либо недожога в измалываемой шихте клинкера. При затвореиии цемента с высокой удельной поверхностью часто образуются уплотненные комочки, которые при дальнейшем перемешивании распадаются. Замечено, что быстрое их схватывание вызывается переходом щелочей в карбонаты в результате взаимодействия с углекислотой при длительном хранении цемента на воздухе. В некоторых случаях оно носит характер ложного схватывания. Имеются данные о других (кроме гипса) видах замедлителей схватывания, их действие в большинстве случаев зависит от дозировки. Можно считать, что карбонаты, хлориды и нитраты являются ускорителями схватывания; сульфаты и фосфаты — замедлителями, за исключением сульфата глинозема, который действует как ускоритель. О влиянии добавок цветных металлов сведения разные. Их считали замедлителями схватывания, однако последние работы показали положительное влияние добавок небольших количеств цинка на твердение портландцемента. Б. Э. Юдович и Н. Т. Власова отмечают, что высокомарочные алитовыс цементы, не содержащие добавок, кроме гипса, могут характеризоваться аэрациопным ложным схватыванием. Оно вызвано образованием эттрингита в тонких слоях конденсата на дислокационной сетке поверхности частиц цемента.
Водоудерживающая способность
. При затворении цемента водой как в лабораторных, так и промышленных условиях можно видеть, как некоторые цементы полностью удерживают воду в период схватывания, другие же отделяют небольшой слой разной толщины. Поскольку водоцементное отношение при приготовлении бетонной смеси обычно всегда превышает значение, установленное при определении нормальной густоты цементного теста, то водоотделение становится особо заметным. От него во многом зависит однородность бетона и прочность сцепления в нем цементного раствора с крупным заполнителем и стальной арматурой. При послойной укладке бетона отделяющаяся из него вода скапливается на поверхности укладываемых слоев. В результате образуется контактная прослойка бетона с большим содержанием воды, что вызывает расслаивание бетона, нарушающее его монолитность, а это особенно нежелательно при укладке массивного бетона. Расслоение может идти и внутри бетона; образующаяся в результате водоотделения пленка воды может заметно понизить сцепление цементного раствора с крупным заполнителем и арматурой. Испарение этой воды вызывает образование дополнительного количества пор, содействующих диффузии агрессивной воды в глубину бетона. Повышение водо-удерживающей способности достигается введением в исходный цемент активной минеральной добавки (в виде трепела, опоки), а также применением некоторых поверхностно-активных веществ. Дозировка и вид добавки должны быть предварительно определены экспериментальным путем. Водоотделение может оказаться полезным, например, при вакуумировании или применении водопоглощающей опалубки, при однослойном бетонировании небольших по сечению конструкций, при изготовлении железобетонных труб способом центрифугирования и в других случаях, когда необходимо снижение В/Ц и повышение плотности и прочности бетона. Равномерность изменения объема — важное свойство цемента, которое определяется в соответствии с требованиями стандарта. Цементный камень при определенной влажности дает усадку либо несколько расширяется. Однако изменения объема камня весьма малы и заметно на равномерность изменения объема при стандартном испытании не влияют. Расширение цементного камня, вызывающее искривление исследуемых образцов либо появление на них волосных трещин,-— результат запоздалой, но весьма сильной по своему действию гидратации химически не связанного свободного оксида кальция в клинкере. Такое расширение называют кажущимся, поскольку объем гашеной извести меньше суммы объемов исходных оксида кальция и воды, вступивших в реакцию. Считают, что частицы образовавшейся гашеной извести растут преимущественно в одном направлении; при этом создаются напряжения, вызывающие расширение массы, которое теоретически составляет 95,5% объема исходного оксида кальция. Такое явление происходит при гидратации крупнозернистых кристаллов оксида кальция, требующей длительного взаимодействия с водой. Цементный камень расширяется также при избыточном содержании крупнокристаллических зерен пери-клаза (оксида магния), а также при большом количестве добавки гипса. На заводах получают клинкер с минимально допустимым количеством свободного оксида кальция в цементе, содержание периклаза и гипса в котором обеспечивает равномерность изменения объема. Достигается это при помощи тонкого помола сырьевой шихты равномерного состава, качественного обжига и быстрого охлаждения клинкера. Поскольку расширение цементного камня может проявиться в опасных размерах спустя много лет после за-творения цемента, стандартом предусмотрен ускоренный метод испытания цемента. По ГОСТ стандартно изготовленные лепешки цементного теста подвергаются через сутки после затворения кипячению в воде; после охлаждения они не должны иметь искривлений и даже волосных трещин. В ряде стран испытание ведут по методу Ле Шателье путем кипячения через сутки после затворения цилиндрика цементного теста, разрезанного по длине и снабженного двумя иглами, концы которых расходятся под действием напряжений, возникающих в результате расширения цементного камня. Допустимое расширение составляет 3—10 мм, причем максимальный его размер предусмотрен в большинстве стандартов. В ряде стран регламентирован автоклавный метод испытания образцов призм в течение 3 ч при давлении 2,1 МПа. В США допускается расширение портландцемента, равное 0,8%, в других странах — 0,5, 1 и даже 1,3%.
Тепловыделение.
Гидратация цемента сопровождается выделением тепла, что может быть установлено по изменению температуры цементного теста, помещенного немедленно после его затворения в термос. В тонкостенных бетонных конструкциях это тепло сравнительно быстро рассеивается и заметно не влияет на структуру цементного камня. Проблема тепловыделения привлекла внимание исследователей в связи с тем, что в массивном бетоне гидротехнических и других видов сооружений заметно повышается температура до значения, часто превышающего, примерно на 323К, температуру бетона при его укладке. Рост температуры вызывает напряжения, которые являются результатом неравномерного нагрева и охлаждения бетона; при малой его теплопроводности внутренние слои массива охлаждаются медленнее поверхностных. При возникновении больших термических напряжений в бетоне могут появиться трещины. Для устранения этих явлений применяют по возможности тощие бетонные смеси или укладывают в толщу массива трубы, по которым поступает вода для охлаждения бетона. Клинкерные минералы при полной гидратации различаются по термохимическому эффекту, который для C2S состоит из тепла, выделяющегося как при химической реакции, так и при адсорбции воды гелем и составляет 504 кДж/кг. Тепловыделение при гидратации C3S равно 260 кДж/кг. Теплота гидратации для C4AF 420 кДж/кг й для С3А — 869 кДж/кг. Теплота образования гидросульфоалюминатов кальция составляет 558 кДж/кг безводного С3А. Теплота гидратации для СаО определена в 1170 кДж/кг и для MgO — 852 кДж/кг. Изучение тепловыделения при гидратации портландцемента различного минералогического состава подтвердило, что наиболее термичнымн минералами в цементе являются C3S и С3А, причем C4AF замедляет тепловыделение других минералов. Основное количество тепла выделяется в первые 3—7 сут твердения. Примерное тепловыделение чистого, не содержащего добавок портландцемента для разной продолжительности твердения можно определить по разработанным в нашей стране коэффициентам, характеризующим долю участия клинкерных минералов в этом процессе. Введение в портландцемент малых количеств активных минеральных добавок заметно не влияет на установленную зависимость. Стандартную термохимическую характеристику цемента находят по ГОСТ при помощи термосного метода. Испытанию подвергают цементный раствор, в котором соотношение между цементом и песком устанавливается в зависимости от вида и марки цемента так, чтобы максимальное повышение температуры было бы близко к 288К. Расход цемента в единице объема раствора возрастает, если вместо портландцемента применяют пуццо-лановый и шлакопортландцемент. С увеличением расхода цемента в 1 м3 бетона тепловыделение возрастает практически линейно. Повышение В/Ц приводит к заметному возрастанию теплового эффекта в случае применения алитового и алюминатного цементов. Зависимость тепловыделения от В/Ц у бетонов на белитовом цементе меньше. У бетонов с одинаковым расходом цемента и подвижностью изотермическое тепловыделение не зависит от свойств заполнителей, удельной теплоемкости и средней плотности материала зерен. Пластифицирующие и воздухововлекающие добавки по-разному влияют на тепловыделение. Введение ускорителей твердения приводит к увеличению тепловыделения. Набухание и усадка цемента. Набухание и усадка обусловлены способностью цементного камня и бетона изменять объем в зависимости от химических процессов, протекающих при твердении, и от влажности среды, в которой они находятся. Набухание сопровождается поглощением воды и увеличением массы цементного камня, достигающей 3—5% при продолжительности твердения 100 сут. Бетоны, находящиеся в воде, набухают меньше, чем цементный камень; через 6—12 мес. происходит стабилизация объемных изменений, хотя масса при этом продолжает увеличиваться. Набухание не вызывает снижения прочности, как это бывает при «запоздалой» гидратации СаОсвоб, периклаза, либо при взаимодействии щелочей цемента с реакционноспособным заполнителем бетона. Набухание цементного камня следует рассматривать как результат взаимодействия с водой, при котором образующийся цементный гель адсорбирует на своей чрезвычайно развитой поверхности воду, раздвигающую гидратиые новообразования. Поэтому при набухании внутренняя структура цементного камня уплотняется. Несомненно, что набухание вызывается также расклинивающим действием тонких пленок воды и осмотическими силами, возникающими в связи с разностью концентраций на поверхностях гидратированных частиц, и полу-проницаемостью, присущей цементному камню. Цементный камень и затвердевший бетон в воздушно-сухой среде дают усадку, сопровождающуюся потерей воды. Скорость усадки возрастает с уменьшением относительной влажности среды, а абсолютная величина усадки (мм/м) в несколько раз превышает набухание. Усадка наблюдается также при взаимодействии гидроксида кальция в цементном камне с углекислотой воздуха. Эта реакция протекает наиболее полно при определенной относительной влажности воздуха. Усадка бетона может привести к возникновению значительных напряжений, образованию микротрещин и макротрещин, нарушению монолитности конструкций и создать тем самым условия для активного действия других внешних агрессивных факторов. Нежелательна также усадка в предварительно напряженных конструкциях. При вычислении потерь предварительного напряжения, а также в расчетах статически неопределимых систем нормативные значения деформаций усадки принимаются пока еще только в зависимости от марки бетона на сжатие без учета вида применяемого портландцемента, а также от жесткости или подвижности бетонной смеси. Прочность цемента — одна из наиболее важных его физико-механических характеристик, от которой в основном и зависит прочность бетона в различных условиях твердения. Прочностные показатели цемента определяют, испытывая затвердевшие образцы из песчаного раствора в установленные сроки твердения. При этих испытаниях мы уже имеем дело с продуктом химического взаимодействия с водой, протекающего при гидратации цемента, поэтому на получаемые прочностные показатели цементного раствора, его физические характеристики оказывают влияние условия, при которых происходят эти химические процессы. В стандартах на методы испытаний цемента строго регламентируются водоцементное отношение, условия приготовления, уплотнения и твердения испытуемых образцов, сроки их испытания, состав раствора, вид применяемого песка, размеры образцов. Стандартные методики каждой страны имеют свои отличительные особенности, поэтому невозможно точно сопоставить прочностные показатели цементов, получаемые в разных странах. Такое сопоставление возможно лишь в том случае, когда по разным стандартным методикам испытывается один и тот же образец цемента. Для алита и алитовых портландцементов характерна близость коэффициентов нарастания прочности (в период от 1 мес до 2 лет). При сопоставлении же интенсивности твердения и цементов с преобладанием указанных минералов наблюдается некоторое различие, особенно заметное для белита и белитового портландцемента в период твердения от одного месяца до шести. Объясняется это тем обстоятельством, что заметный рост прочности белита в этот период не может проявиться при твердении цемента, так как решающее значение для формирования прочности цементного камня имеют процессы, связанные с участием в твердении C3S. В специальных портландцементах, шлаковых, пуццолановых, пластифицированных, гидрофобных и др., влияние минералогического состава исходного цементного клинкера на прочность цемента сохраняется, однако при меньших относительных значениях получаемых показателей прочности. Вместе с тем необходимо учитывать возможность изменения этих коэффициентов в зависимости от состава бетона, содержания в составе цемента активных минеральных добавок, условий его изготовления и температурно-влажностных условий твердения. Скорость взаимодействия цементных зерен с водой зависит от суммарной поверхности зерен или их удельной поверхности (см2/г). С увеличением тонкости помола (удельной поверхности) возрастает скорость процессов твердения и повышается прочность цементного камня. Чтобы получить заданную прочность, необходимо подобрать не только минералогический состав исходного клинкера и вещественный состав цемента, но и оптимальную гранулометрию цементного порошка при определенной его удельной поверхности. При увеличении удельной поверхности независимо от его минералогического состава гидратируется больше цемента. Для предупреждения значительного развития усадки и других нежелательных явлений следует правильно подбирать дозировку гипса. От цемента зависит не только прочность, но и другие свойства бетона, в первую очередь, такие, как морозостойкость, трещиностойкость и др. Требования к удельной поверхности цемента должны выдвигаться с учетом и этих свойств. При рациональном гранулометрическом составе цемента создаются условия для длительного протекания процессов твердения цемента, обеспечивающих его «самозалечивание» при различных напряженных состояниях. Значительно ускорить твердение цемента и повысить его прочность в возрасте до 28 сут можно, вводя специальные добавки — ускорители твердения, являющиеся преимущественно солями одновалентных, двухвалентных и трехвалентных металлов. Наибольшее практическое применение получил хлористый кальции, а также добавки сульфатов и карбонатов натрия и калия. Оптимальную дозировку добавок устанавливают обычно опытным путем. Ползучесть цементного камня и его способность к релаксации напряжений при его высыхании повышаются. Наблюдения Девиса за ползучестью бетона, продолжавшиеся в течение 30 лет, показали, что деформация ползучести через 1 год, принятая за единицу, возрастает через два года до 1,14, через 5 лет — до 1,2, через 10 лет — до 1,26, через 20 лет — до 1,33 и через 30 лет — до 1,36. Несмотря на большое число исследований единого уравнения для описания закономерностей деформаций ползучести бетона во времени нет. Выявлены линейные и нелинейные деформации ползучести. До некоторой границы нагрузки при сжатии деформации ползучести линейно зависят от значения напряжения в бетоне. Переход линейной ползучести в нелинейную происходит в материале в условиях сжатия при напряжении выше RT, когда обнаруживаются микротрещины. Анализ физических явлений в бетоне показывает, что длительное действие нагрузки с напряжениями, превышающими RT, вызывает разрушение структуры, улавливаемое по изменению скорости ультразвука. Мера ползучести имеет различное значение для бетона на обычном портландцементе и на высокопрочном. Для расчетов принимается, что ползучесть на высокопрочном портландцементе меньше. Исходят из того, что уменьшение меры ползучести с увеличением возраста бетона одинаково для обычного и высокопрочного портланднементов.
Морозостойкость
— это способность бетона сопротивляться попеременному замораживанию и оттаиванию при насыщении его пресной или морской водой. Наиболее быстро в насыщенном водой бетоне замерзает «свободная» вода, находящаяся в пустотах и макропорах цементного камня; это происходит при температуре несколько ниже нуля, поскольку в воде содержатся такие растворимые гидратные новообразования, как щелочи и др. Температура замерзания воды в капилляpax зависит от размера капилляров; в особо мелких образуется при минус 233—223К. С дальнейшим понижением температуры возрастает количество воды, превращающейся в лед, но даже при 195К некоторая часть воды в наиболее мелких порах внутри геля остается. Как известно, превращение воды в лед сопровождается увеличением объема на 9%. Г. И. Горчаков полагает, что главными факторами, определяющими напряжения в стенках капилляров цементного камня при замерзании воды, являются: степень заполнения капилляров водой, проницаемость стенок по отношению к воде, скорость кристаллизации воды и параметры, характеризующие внутренний размер капилляров и толщину их стенок. Снижение прочности и разрушение бетона под действием попеременного замораживания и оттаивания объясняется, главным образом, напряжениями, возникающими в структуре цементного камня и бетона. Считают также, что разрушение стенок пор в цементном камне при замораживании и оттаивании — следствие возникновения гидравлического давления воды перед фронтом промерзания. Чтобы получить бетон повышенной морозостойкости очень важно правильно выбрать цемент с учетом его химико-минералогического состава, дисперсности, наличия активных минеральных добавок, а также воздухо-вовлекающих, газообразующих, пластифицирующих и гидрофобных веществ. Важны также расход цемента на 1 м3 бетона, вид и качество применяемых заполнителей. Наиболее морозостойки бетоны па алитовых высокопрочных, а также на сульфатостойких портландцементах. Наименее морозостойки при температурах замерзания до минус 223К бетоны на пуццолановых и шлакопортландцементах в связи с повышенным количеством воды, адсорбционно удерживаемой содержащимися в этих цементах активными минеральными добавками. Следует отметить, что пропаривание снижает морозостойкость цементных бетонов.
Виды цемента
Когда рассматривают цемент, виды указывают в достаточно большом количестве, но и они не исчерпывают все многообразие материалов, что можно создавать из вяжущего. Ведь при правильном подходе придавать цементу разные свойства можно, вводя в состав те или иные добавки. А ввиду того, что цемент используется в самых разных сферах и областях, вариантов приготовления смеси существует множество. Варьироваться состав порошка может также за счет особенностей сырья, добываемого в том или ином регионе.
Рассмотрение наиболее популярных видов цемента:
- Портландцемент – универсальный базовый материал, который применяется в самых разных ремонтно-строительных работах практически во всех сферах.
- Глиноземистый – производится на базе известняка или глиноземов, актуален для срочных аварийных работ, зимой, при воздействии минерализованных вод, так как быстро схватывается. Не применяется в жарком климате.
- Магнезиальный – сделан на базе оксида магния, затворенного хлоридами и сульфатами магния. Цемент влагостойкий и прочный, используется в разных областях.
- Известково-шлаковый – в нем 30% извести и 5% гипса.
- Тонкомолотый – портландцемент с песком и миндобавками (известняки, перлиты, зольные, шлаковые, вулканические материалы).
- Фосфатный – в его составе есть оксиды, фосфорная кислота и иные составы, которые в соединениях производят фосфатное затвердевание.
- Смешанный – основное вещество оксид кремния, в состав введены добавки (шлаки, обожженные глины, зольные и топливные вещества, керамзит, гипс, осадочные горные породы и т.д.).
- Кислотоупорный – в смесь введены растворимое стекло, кислотоупорные наполнители для твердения, водный раствор силиката натрия.
- Специальный тампонажный цемент – для его производства измельчаются вместе гипс, клинкер и триэтаноламин.
- Цветной – белый портландцемент смешивают с пигментами или добавляют натуральные красители (охра, железный сурик, окись хрома) еще на этапе обжига клинкера с дальнейшим помолом.
- Водонепроницаемый – основными ингредиентами выступают бокситы, известняки, оксид алюминия.
- Кладочный – цемент включает в составе 20% портландцементного клинкера, а также доменные шлаки, разные минеральные материалы.
- Шлакощелочной – производится из отходов и шлаков доменных печей, которые создают с щелочами прочный и качественно твердеющий строительный материал.
- Сульфатостойкий – обыкновенный состав с модифицирующими добавками, которые делают вяжущее стойким к негативному воздействию и более прочным.
- Расширяющийся – цемент, который увеличивается в объеме в процессе твердения на воздухе за счет введения в состав определенных гидравлических добавок.
- Карбонатный – его делают на базе сидеритовых или глинистых карбонатных пород с 25-30% доломитов или известняков.
- Гидрофобный – состав со специальными добавками, которые делают его стойким к воздействию воды.
- Пуццолановый цемент – собирательное название категории материалов, в составе которых есть минимум 20% активных минеральных добавок.
Кроме того, на рынке можно найти много других составов, которые могут использоваться при выполнении определенных видов работ в тех или иных условиях, сферах.
Свойство портландцемента
Прочность – это способность материалов воспринимать нагрузки, не разрушаясь. Прочность определяется его способностью затвердевать после смешивания с водой.
Это вяжущее гидравлическое вещество, главным составляющим которого является силикат кальция. Он наиболее распространен в современном строительстве. Получают его при помощи тонкого измельчения клинкера и гипса (3-7 %); допускается добавление 10-15 % активных минеральных добавок. Клинкер – это результат обжига (1450-1500 градусов) сырьевой смеси, которая состоит на 75 % из карбоната кальция (известняка) и на 25 % из глины. На свойства портландцемента влияет состав клинкера и степень его измельчения. Важное свойство – способность твердеть, взаимодействуя с водой. Характеризуется оно маркой, которую определяют по выдержке на сжатие и изгиб стандартного образца раствора после 28 суток отвердения при влажных условиях.
Важнейшее свойство – это способность отвердевать при взаимодействии с водой и приобретать камневидное состояние. Чем больше механическая прочность отвердевшего камневидного раствора или бетона и чем быстрее она достигнута, тем лучше качество.
Поэтому различаются:
- Конечная прочность, которую может приобрести раствор при отвердении.
- Скорость твердения, которую характеризует интенсивность роста прочности во времени.
Цемент, который отличается высоким ростом прочности, называется быстротвердеющими, а когда при этом еще достигается высокая прочность, то высокопрочными.
Механическую прочность определяют разными способами, к примеру, оценивая предел прочности при растяжении, при сжатии, при изгибе. При этом подборка состава смесей, хранение, изготовление и испытание образцов осуществляются согласно требованиям, устанавливаемым соответствующими стандартами.
Сульфатостойкий
Сульфатостойкий портландцемент отличается низкой скоростью затвердевания и устойчивостью к морозу.
Кроме обыкновенного, выпускают разновидности, которые отличаются свойствами, составом и областью применения: сульфатостойкий, гидрофобный, пластифицированный, быстротвердеющий, белый портландцемент (для производства асбестоцементных изделий) и пр.
Сульфатостойкий – это разновидность портландцемента. Обладает высокой стойкостью к воздействию минерализованных вод, которые содержат сульфаты, малым тепловыделением, медленной интенсивностью отвердения и большой морозостойкостью. Сульфатостойкий получают при помощи тонкого измельчения клинкера с нормированным минералогическим составом. Предназначается он для производства железобетонных и бетонных конструкций гидротехнических сооружений, которые испытывают агрессивное воздействие сульфатной среды (к примеру, морской воды), преимущественно в условиях с переменным увлажнением (замерзание и оттаивание).
Исходным сырьем служит глина с малым содержанием глинозема и железа. В этой смеси не должно содержаться ни инертных, ни активных минеральных добавок. Такое сырье не имеет большого распространения, а это препятствует широкому производству сульфатостойкого портландцемента.
Шлаковый – это измельченный доменный гранулированный шлак с примесью активирующих добавок.
Шлаковый – это объединенное название для цементов, получаемых помолом доменных гранулированных шлаков с добавлением активизаторов (извести, строительного гипса, ангидрита) или смешиванием этих отдельно измельченных компонентов. Различается известково-шлаковый цемент, содержащий 10-30 % извести и 5% гипса от массы, и сульфатно-шлаковый, содержащий 15-20 % ангидрита или гипса, а портландцемента 5 % или извести 2 %. Применяют шлаковый для получения строительного раствора и бетона, которые используют в подводных и подземных сооружениях. Наиболее эффективен известково-шлаковый при производстве автоклавных изделий.
Пуццолановый – это название для группы, имеющих в своем составе не менее 20 % минеральных активных добавок. По сравнению с обычным портландцементом он отличается повышенной коррозионной стойкостью, меньшей скоростью твердения и пониженной морозостойкостью. Применяют его для производства бетона, используемого в подземных и подводных сооружениях.
Глиноземистый
Особенностями являются водонепроницаемость, морозостойкость и огнестойкость.
Глиноземистый – гидравлическое, вяжущее вещество быстроотвердевающее; полученное в результате измельчения клинкера, который получен с помощью обжига сырьевой смеси из известняков и бокситов. Плавление и обжиг сырьевой смеси производятся в вагранках или доменных вращающихся печах.
Содержание Al2O3 в конечном продукте определяет вид глиноземистого цемента: высокоглиноземистый (до 70 %) и обычный (до 55 %). Отличается он повышенной устойчивостью к коррозии, быстро нарастающей прочностью, большой экзотермией при затвердении и высокой огнеупорностью. При помощи глиноземистого получают бетон и растворы большей водонепроницаемости и плотности, чем с портландцементом.
Гидрофобный портландцемент получают при измельчении клинкера с гидрофобизирующей добавкой и гипсом. Добавка вводится в количестве 0,1-0,3 % и образует на частицах тонкие гидрофобные пленки, которые уменьшают гигроскопичность и предохраняют его от порчи даже при условиях высокой влажности. Растворы и бетон имеют малое водопоглощение, большую морозостойкость и водонепроницаемость, в отличии обычных растворов.
Напрягающему цементу присуще быстрое схватывание, водонепроницаемость, морозостойкость и трещиностойкость.
Тампонажный – это разновидность портландцемента; который предназначается для цементирования газовых и нефтяных скважин. Изготавливают его при помощи совместного тонкого измельчения гипса и клинкера и применяют в форме теста с содержанием воды 40-50 %.
Напрягающий – это разновидность расширяющего. Его получают при помощи помола 15 % глиноземистого шлака, 65 % портландцементного клинкера и 5 % извести. Он быстро твердеет и быстро схватывается.
После затвердения он имеет высокую водонепроницаемость. Расширяясь при отвердении, достигает высокого давления, которое используют для создания железобетонных конструкций, имеющих натяжение арматуры в нескольких направлениях. Напрягающий применяют в производстве напорных труб, для возведения емкостных сооружений и тонкостенных конструкций из железобетона.
Основные марки
Марки цемента обозначаются буквой М и цифрами от 25 до 1000. Самые распространенные марки – М100, М200, М300, М400 и М500. Остальные применяются для конкретных задач и намного реже. Самые универсальные и прочные марки цемента – М400 и М500. Как было указано выше, цифры рядом с индексом говорят о нагрузке в кг/см2, которую может выдержать застывший камень.
Марки ниже М100 и М200 применяются для штукатурки, кладки, выше М600 – для возведения объектов особого назначения (военных, бункеров, ракетных шахт и т.д.).
Кроме прочности, маркировка цемента может представлять много другой важной информации. В первую очередь, обращают внимание на буквы.
Что обозначают буквы в маркировке цемента:
- ПЦ – портландцемент.
- ШПЦ – шлако-портландцемент.
- Б – быстротвердеющий состав.
- СС – вяжущее с сульфатостойкими свойствами.
- ПЛ – цемент уже с пластификатором в составе.
- Н – нормированный, цемент с подтвержденной прочностью.
- ВРЦ – водонепроницаемый цемент (применяется в возведении гидротехнических сооружений).
Также по ГОСТу 31108 указывают наличие добавок в порошке: I обозначает, что добавок нет; II – в цементе есть минеральные компоненты. Объем добавок обозначается буквами: А – 6-20% минкомпонентов, Б – 21-35%. Добавками могут выступать пуццолан, шлак, полимеры и т.д. Скорость твердения также обозначается буквами: Н – нормально твердеющее вяжущее, С – скорость средняя, Б – быстротвердеющие смеси.
Добавки в цементе также индексируются буквой Д и цифрами, отображающими процент содержания. Д0 – добавок нет, Д20 – в состав цемента включено 20% добавок, в результате чего вещество получается более пластичным. Общее правило такое: чем выше марка, тем больше прочность; чем выше процент добавок, тем эластичнее цемент (но при критичном содержании прочность может падать).
Наиболее востребованные марки цемента:
- М100, М200, М300 – производство разных элементов и изделий с нужными характеристиками.
- М400 – применяются при заливке сборного/монолитного железобетона.
- М500 – актуален для производства гидротехнических конструкций и плит, которые находятся в воде переменного уровня, для заливки бордюров и тротуаров, фундаментов всех видов.
- М600 – бетонирование сборных конструкций повышенного качества.
- М700 – работа с постройками, где отмечены высокие нагрузки и зоны напряжения.
Классификация
С введением в обращение нормативного документа «ГOCT 31108-2003. Цементы общестроительные. Технические условия» существующие обозначения марки и сортности цемента были унифицированы со странами Европейского союза.
Различают пять основных видов. В соответствии с действующими стандартами классифицируется цемент с помощью условных обозначений:
- Портландцемент ЦEM I – обычно называют «чистым», поскольку он не содержит примесей. Наиболее широко такой вид цемента применяется в строительстве промышленных и гражданских объектов, для изготовления предварительно напряженного бетона, сборного железобетона и строительных растворов для монолитных работ. Одну из разновидностей — портландцемент белый, содержащий отбеливающие добавки используют для приготовления сухих строительных смесей.
- Портландцемент с минеральными добавками ЦЕМ II – имеет в своем составе глинозем, бокситы, известняк и различные легирующие примеси. Основным преимуществом данного типа цемента является относительно быстрое увеличение прочности, так после 24 часов затвердевания он достигает 80 — 90% от стандартизированного значения. Используется на строительных объектах для быстрого выполнения работ по бетонированию. Получаемые из него растворы, можно использоваться при температуре до -10 градусов по Цельсию, без применения дополнительной защиты. Марку ЦЕМ II не рекомендовано смешивать с цементом других видов.
- Шлакопортландцемент ЦЕМ III — получают путем измельчения, на финальной стадии приготовления, цементного клинкера с гранулированным доменным шлаком. В качестве дополнения добавляется сульфат кальция. Шлаковый цемент по внешнему виду похож на обычный, но имеет хорошо выраженные отличительные свойства. Он особенно хорошо подходит для сред подверженных воздействию воды с низкой агрессивностью. Требует особого ухода во время затвердения, так стяжку надо две недели обильно опрыскивают водой, не давая ей засохнуть. Если это условие не выполнить — бетон не наберет достаточной прочности. Применяется в промышленности, в частности, в изготовлении монолитных конструкций для различных гидротехнических сооружений, работающих в условиях высокого риска наступления коррозии.
- Пуццолановый цемент ЦЕМ IV — это смесь, которую получают из цементного клинкера, летучей золы (отходы от сжигания угля на электростанциях) и гипса. Свойства этого вида цемента аналогичны свойствам, которыми характеризуется шлакопортландцемент, но отличается низким тепловыделением при гидратации и повышенной устойчивостью к воздействию агрессивных вод. Используется как, в общем, так и в специализированном строительстве, а также для производства ячеистого бетона.
- Композиционный цемент ЦЕМ V или многокомпонентный. Сложно назвать портландцементом, поскольку содержание добавок превышает 35% и может доходить до 80%. В зависимости от состава добавок может иметь различные свойства, поэтому имеет строго специализированное применение.
Эти виды (от ЦЕМ II до ЦЕМ V), в свою очередь, подразделяются на три типа: A, B, C — по количеству процентного содержания примесей и присадок по отношению к основному компоненту – клинкеру.
Дополнительным символом в маркировке присутствует обозначение подкласса, где буква Н соответствует нормально твердеющий состав, буква Б – быстротвердеющему, соответственно.
Дополнительная информация: Согласно, европейского стандарта EN 197-1 маркировка цемента имеет обозначение: CEM I, CEM II, CEM III, CEM IV и CEM V и расшифровывается в полной аналогии с нашим ГОСТом.
Область применения
Область применения цемента напрямую зависит от его свойств и характеристик. В СНиПах и ГОСТах указаны все правила и особенности применения разных марок цемента с определенными техническими характеристиками в строительстве зданий, производстве изделий и т.д. Также влияют на выбор цемента условия его применения, поставленные задачи, особенности эксплуатации.
Где применяют цемент:
- Проведение общестроительных работ – от строительства хозпостроек и малоэтажных домов до заливки многоэтажных зданий, в сборных и монолитных фундаментах и перекрытиях, заливке полов, стен. Применяется цемент также для замеса кладочного, штукатурного раствора.
- Дорожно-промышленное строительство – возведение взлетно-посадочных полос, мостов, гидротехнических конструкций, несущих частей многоэтажных зданий.
- Добывающая промышленность – укрепление технических сооружений, тампонирование газовых/нефтяных скважин.
- Сооружения, эксплуатируемые в сложных и агрессивных условиях – при повышенных сульфатах, в кислотах, где наблюдается частое замораживание/оттаивание.
Несколько полезных советов по использованию цемента
Чтобы произведенный из цемента бетонный раствор соответствовал всем требованиям и был пригодным для создания прочных, надежных, долговечных конструкций и изделий, необходимо помнить о некоторых правилах.
Полезные рекомендации по применению цемента:
- Хранить вяжущее нужно не больше 3 месяцев и только в защищенном от влаги, ветра месте. Лучше всего на специальных поддонах, в заводских мешках.
- Правильный рецепт следует искать сразу и добавлять компоненты можно лишь на этапе смешивания сухих ингредиентов. Когда цемент затворен водой, добавлять сухие компоненты уже нельзя. Поэтому воду изначально льют по чуть-чуть, добиваясь нужной консистенции.
- Открытый мешок с цементом хранить можно не больше 1 недели при условии низкий влажности и максимум 1 день при высокой влажности.
- Скомковавшийся цемент нельзя использовать – некоторые советуют разбить камни и применять как обычное вяжущее, но реакция уже прошла и обратно не вернуть химическую формулу. Применять такой цемент можно лишь в виде наполнителя и то в объеме, не превышающем треть от общего объема наполнителей.
- При замешивании бетона нужно четко следовать пропорциям, любое отклонение понизит свойства.
- В мороз применять нужно специальный морозостойкий цемент. В сильную жару лучше не работать или организовать тщательный уход за затвердевающим бетоном.
- Больше цемента или слишком высокая марка – не значит выше прочность. Всегда нужно ориентироваться на стандарты и применять ту марку, которая подходит для конкретного вида работ. При выборе вяжущего низкой марки бетон не обеспечит нужные характеристики, высокой – расходы будут не оправданны неактуальными свойствами.