Уплотнение бетона. Механический и ручной способы


Характеристика

Едва ли не самое важное свойство бетонной смеси – свойство растекаться под воздействием своей массы или дополнительной нагрузки.

Бетонная смесь обладает одним очень важным свойством – свойством растекаться, благодаря чему можно изготовить изделия самой различной формы.

Именно благодаря этому свойству из нее можно получить огромное количество изделий самых разнообразных форм, и кроме того, есть возможность применить ее для различных способов уплотнения. Свойства смеси, такие как ее текучесть, и то, каким образом она была уплотнена, тесно взаимосвязаны. Например, с малой текучестью нуждаются в энергичном уплотнении, и формирование бетонных изделий из них должно сопровождаться активным уплотнением в виде интенсивной вибрации или вибрации с дополнительным пригрузом. Другие из известных способов уплотнения – прессование, трамбование, прокат.

Смеси с большой подвижностью быстрее и легче всего уплотнять, применяя вибрацию. Сжимающие виды уплотнения, такие как прокат, прессование или трамбование, напротив, непригодны для них. Под напором ударов трамбовки или сильных прессующих движений бетон с большой текучестью разбрызгается трамбовкой или легко вытечет из-под пресса.

У литых есть способность увеличивать плотность под влиянием своей же массы. Для того чтобы дополнительно уплотнить бетон, иногда используется кратковременная вибрация.

Определение жесткости бетонной смеси при помощи специального прибора

Подводя итог сказанному, можно выделить следующие методы уплотнения: вибрирование, прокат, прессование, литье, трамбование и штыковка. Вибрирование является самым эффективным способом как в экономическом, так и в техническом отношении. Его с успехом применяют, сочетая с иными видами механического уплотнения – прессованием (вибропрессованием), трамбованием (вибротрамбованием), прокатом (вибропрокатом). Одним из видов механического уплотнения бетонной смеси с большой текучестью является центрифугирование, которое используют при формировании полых внутри изделий круглого сечения. В получении смесей высокого качества хорошо зарекомендовала себя операция вакуумирования бетона во время его механического уплотнения вибрированием, хотя из-за большой продолжительности этого процесса его экономический эффект заметно снижается.

Физико-механические основы уплотнения бетонных смесей

Высококачественный бетон можно получить при использовании качественных материалов, правильном подборе состава бетонной смеси, эффективном ее уплотнении и создании оптимальных условий для твердения бетона.

Бетонную смесь, укладываемую в монолитные конструкции, уплотняют штыкованием, трамбованием, вибрированием и вакууми-рованием. Цель уплотнения — обеспечить хорошее заполнение бетонной смесью опалубочной формы и добиться наилучшей упаковки входящих в нее частиц. Хорошо уплотненный бетон имеет более высокую плотность, его объемная масса по сравнению с неуплотненной бетонной смесью повышается с 2,2 до 2,4—2,5 т/м3. Возрастают прочность, морозостойкость, водонепроницаемость бетона, улучшаются другие его свойства.

Штыкование смеси ведут вручную с помощью шуровок. Из-за трудоемкости и низкой производительности этого способа его применяют в исключительных случаях для уплотнения бетонной смеси в тонкостенных и густоармированных конструкциях. Укладку высокоподвижных смесей (с осадкой конуса более 10 см) и литых ведут тоже с помощью шнуровок, чтобы избежать их расслоения при вибрировании.

Трамбование бетонной смеси ведут ручными и пневматическими трамбовками. Этот способ применяют редко — при укладке весьма жестких бетонных смесей в малоармированные конструкции, а также в тех случаях, когда применить вибраторы невозможно из-за отрицательного воздействия вибрации на расположенное вблизи оборудование.

Основным способом уплотнения бетонных смесей является вибрирование, или виброуплотнение. Этот способ применяют для уплотнения смесей с осадкой конуса от 0 до 10 см.

Сущность процесса виброуплотнения упрощенно можно представить следующим образом. На бетонную смесь, представляющую» собой многокомпонентный конгломерат с рыхлой структурой и упруговязкими свойствами, воздействуют вибрацией. Вибраторы погружают в бетонную смесь, крепят к опалубке или устанавливают на поверхность слоя смеси. Энергия вибрационных колебаний ближайших слоев смеси преодолевает силы внутреннего трения и сцепления между ее компонентными частицами. В результате резка снижается вязкость смеси; в период вибрирования она приобретает свойства тяжелой структурной жидкости, обладающей значительной текучестью. При этом смесь хорошо заполняет опалубочную форму и пространство между густорасположенными арматурными стержнями.

Вместе с тем при снижении вязкости смеси в результате вибрирования ее частицы под действием гравитационных сил стремятся занять по отношению друг к другу наиболее устойчивое положение. Это приводит к взаимоукупорке частиц, т. е. к наиболее плотному их расположению в форме. Одновременно в зоне вибрации создается повышенное давление, вследствие чего воздух интенсивно вытесняется из бетонной смеси. Эти взаимосвязанные процессы обеспечивают получение бетона с плотной структурой и хорошего качества.

Вибрирование характеризуется двумя параметрами: частотой и амплитудой колебаний, причем в данном случае амплитуда — наибольшее отклонение колеблющейся частицы от положения равновесия, выраженное в миллиметрах. Эти параметры взаимосвязаны: низкочастотные вибраторы имеют большую амплитуду колебаний, и наоборот.

Выпускаемые нашей промышленностью вибраторы по вибрационным характеристикам можно подразделить на низкочастотные с числом колебаний до 3500 в 1 мин и амплитудой до 3 мм, средне-частотные, имеющие 3500—9000 кол/мин и амплитуду 1—1,5 мм; высокочастотные с частотой 10 000—20 000 кол/мин и амплитудой 0,1—1 мм.

Низкочастотные вибраторы с наибольшим эффектом применяют для уплотнения бетонных смесей с крупностью заполнителя 50— 70 мм и более, среднечастотные — при крупности 10—50 мм, высокочастотные — при крупности до 10 мм, т. е. мелкозернистых бетонов.

По способу воздействия на бетонную смесь вибраторы подразделяют на внутренние (глубинные), погружаемые рабочим органом (корпусом) в слой бетонной смеси, и непосредственно передающие колебания через корпус.

Внутренние вибраторы подразделяют на вибробулавы и вибраторы с гибким валом. Поверхностные вибраторы, устанавливаемые на слой бетонной смеси, передают ей колебания через рабочую площадку или вибробрус. Наружные в ибр а тор ы укрепляют на опалубке, через которую они передают колебания бетоннной смеси.

По роду питающей энергии различают вибраторы электромеханические, электромагнитные и пневматические. По использованию вибраторы подразделены на одиночные и вибропакеты, используемые для уплотнения бетонной смеси в большеобъемных блоках.

При уплотнении бетонной смеси внутренними вибраторами толщину укладываемых слоев принимают не более 1,25 от их рабочей части. Для лучшего сцепления между отдельными слоями вибратор частично заглубляют в ранее уложенный слой. Продолжительность вибрирования в одной точке зависит от типа вибратоpa и технологических характеристик бетонной, смеси, в частности ее подвижности. Чем меньше подвижность уплотняемой смеси, тем больше длительность ее виброуплотнения.

Следует помнить, что при недостаточной продолжительности вибрирования смесь окажется недоуплотненной, а бетон — пористым и некачественным. Чрезмерно же длительное вибрирование приводит к расслоению смеси и ухудшению качества бетона. В каждом случае опытным путем определяют оптимальное время вибрирования. Ориентировочно для внутренних вибраторов оно равно 20—50 с.

Степень виброуплотнения определяют визуально. Основными признаками достаточного виброуплотнения служат: прекращение оседания бетонной смеси, появление на ее поверхности цементного молока и прекращение выделения пузырьков воздуха.

По окончании виброуплотнения смеси на одной позиции во избежание появления пустот вибратор медленно вытаскивают, не выключая его, и переставляют на новую позицию. Расстояние между позициями не должно превышать полутора радиусов действия вибратора, причем зоны вибрирования должны перекрывать друг друга. Радиус действия зависит от подвижности бетонной смеси и типа вибраторов. Для вибратора с гибким валом И-116А он колеблется от 25 до 50 см, для вибробулавы И-50А — от 45 до 50 см.

Для получения качественного бетона особенно тщательно необходимо вести виброуплотнение смеси в углах опалубки и у ее стенок, в местах с густорасположенной арматурой, на перегибах конструкции. Чтобы не нарушить сцепления бетона с арматурой или закладными деталями, не следует устанавливать на них работающие вибраторы.

Поверхностными вибраторами бетонную смесь уплотняют отдельными полосами с перекрытием провибрированной полосы на 10—15 см. Толщина слоев, прорабатываемых поверхностными вибраторами, составляет 25—30 см; продолжительность работы на одной позиции от 20 до 60 с. Окончание вибрирования определяют по внешним признакам, которые перечислены выше. При перестановке поверхностный вибратор специальным крючком отрывают от бетона и перемещают на новую позицию. Не рекомендуется медленно протаскивать работающий вибратор по поверхности бетона, так как при этом затруднительно вести контроль качества виброуплотнения. Вибробрус (виброрейку) в процессе виброуплотнения медленно перемещают по специальным направляющим, укладываемым по краям бетонируемой полосы.

Наружные вибраторы жестко крепят к опалубке. С их помощью можно уплотнять смесь на глубину до 25 см. При бетонировании высоких конструкций (например, колонн или стен) устанавливают несколько вибраторов по высоте, включая их по мере укладки бетонной смеси. Можно пользоваться одним вибратором, переставляемым с места на место, при наличии приспособлений для быстрого его закрепления. Продолжительность работы поверхностного вибратора на одной стоянке 50—90 с. Для обеспечения бесперебойного и качественного виброуплотнения на рабочем месте должны находиться запасные вибраторы.

Способ уплотнения бетонной смеси вакуумированием основан на принципе отсоса из нее излишней воды и воздуха. При отсосе частицы смеси сближаются, снижая ее пористость и усадку и улучшая качество бетона. Так, прочность вакуумированного бетона повышается на 15—20% по сравнению с визированным бетоном.

Вакуумирование применяют для уплотнения бетона в тонких конструкциях, имеющих большую развернутую поверхность (например, при бетонировании сводов, оболочек и куполов). Наибольшая толщина слоя бетона, прорабатываемого вакуумированием, 30 см.

Вакуумирование смеси можно вести несколькими способами: с помощью опалубочных вакуум-щитов (при бетонировании тонких вертикальных или наклонных стенок); переносными вакуум-ящиками, которые устанавливают сверху на уложенный бетон; при помощи вакуум-трубок, устанавливаемых внутрь бетонной конструкции; комбинированным способом, сочетающим в себе признаки первых трех.

В комплект оборудования для вакуумирования входят вакуум-насос, ресивер, всасывающие шланги и вакуум-щиты (вакуум-трубки). Вакуум-щит состоит из каркаса размером 100X125 см с герметизирующей прокладкой по контуру. В нижней части щита имеется основа из двух стальных сеток и натянутой по ним фильтрующей ткани. Между крышкой щита и фильтрующей частью образуется полость; при создании в ней вакуума из бетона отсасывается воздух и свободная вода, в результате чего бетон уплотняется. Вакуумирование смеси ведут при степени разрежения в системе не менее 70 кПа.

По окончании вакуумирования вакуум-щиты отсоединяют от системы. В полости попадает воздух, и они легко отстают от бетона. Щиты снимают и переставляют на новые позиции.

Способы уплотнения

Штыкованием называется проталкивание кусочков щебня, застрявших между прутьями арматуры. Для штыкования в процессе укладки и вибрирования растворов с осадкой конуса 40-80 мм в конструкциях с большим количеством арматуры используются шуровки, сделанные из арматурной стали. Кроме того, их применяют при уплотнении пластичных смесей с осадкой конуса более 80 мм, которые расслаиваются при виброукладке.

Во время вибрации частицы бетона стараются принять более удобное положение, в котором вибрация будет воздействовать на них по минимуму, в результате бетонная смесь уплотняется.

Вибрирование – уплотнение бетона, которое заключается в передаче бетонной смеси вынужденных колебательных движений, заключающихся во встряхивании. Находясь в подвешенном состоянии во время встряхивания, связь частицы раствора с остальными частицами постоянно нарушается. Благодаря воздействию силы толчка и под влиянием собственной массы при падении, частицы стремятся занять более компактное положение, в котором влияние толчков на них минимальное. В результате более плотной упаковки вся бетонная смесь уплотняется. Еще одной причиной уплотнения является так называемая тиксотропность – свойство временного перехода в более текучее состояние под воздействием внешней силы. Пребывая в жидком состоянии, смесь лучше растекается во время вибрирования, приобретая форму содержащей ее емкости с последующим уплотнением под действием силы гравитации. И последняя, третья причина, по которой смесь уплотняется – это высокие технические показатели бетона.

Значительная степень уплотнения в результате применения вибрирования обусловлена применением оборудования с незначительной мощностью. К примеру, массивы бетона объемом в пару кубометров эффективно уплотняются устройствами с потребляемой мощностью всего в пределах 1-1,5 кВт.

Способность смесей бетона к тиксотропности зависит от текучести самой смеси и скорости, с которой перемещаются ее частицы друг относительно друга. Смеси с большой подвижностью легко переходят в более текучее состояние и не требуют большой скорости перемещения при вибрации. При увеличении жесткости подвижность смеси уменьшается и свойство к тиксотропному разжижению утрачивается, что требует увеличения скорости вибрации для уплотнения бетона и, соответственно, более высоких затрат энергии.

Уплотнение бетонной смеси. Основы теории виброуплотнения

Высококачественный бетон можно получить при использовании качественных материалов, правильном подборе состава бетонной смеси, эффективном ее уплотнении и создании оптимальных условий для твердения бетона. Бетонную смесь, укладываемую в монолитные конструкции, уплотняют штыкованием, трамбованием, вибрированием и вакууми-рованием. Цель уплотнения — обеспечить хорошее заполнение бетонной смесью опалубочной формы и добиться наилучшей упаковки входящих в нее частиц. Хорошо уплотненный бетон имеет более высокую плотность, его объемная масса по сравнению с неуплотненной бетонной смесью повышается с 2,2 до 2,4—2,5 т/м3. Возрастают прочность, морозостойкость, водонепроницаемость бетона, улучшаются другие его свойства. Штыкование смеси ведут вручную с помощью шуровок. Из-за трудоемкости и низкой производительности этого способа его применяют в исключительных случаях для уплотнения бетонной смеси в тонкостенных и густоармированных конструкциях. Укладку высокоподвижных смесей (с осадкой конуса более 10 см) и литых ведут тоже с помощью шнуровок, чтобы избежать их расслоения при вибрировании. Трамбование бетонной смеси ведут ручными и пневматическими трамбовками. Этот способ применяют редко — при укладке весьма жестких бетонных смесей в малоармированные конструкции, а также в тех случаях, когда применить вибраторы невозможно из-за отрицательного воздействия вибрации на расположенное вблизи оборудование. Основным способом уплотнения бетонных смесей является вибрирование, или виброуплотнение. Этот способ применяют для уплотнения смесей с осадкой конуса от 0 до 10 см. Сущность процесса виброуплотнения упрощенно можно представить следующим образом. На бетонную смесь, представляющую» собой многокомпонентный конгломерат с рыхлой структурой и упруговязкими свойствами, воздействуют вибрацией. Вибраторы погружают в бетонную смесь, крепят к опалубке или устанавливают на поверхность слоя смеси. Энергия вибрационных колебаний ближайших слоев смеси преодолевает силы внутреннего трения и сцепления между ее компонентными частицами. В результате резка снижается вязкость смеси; в период вибрирования она приобретает свойства тяжелой структурной жидкости, обладающей значительной текучестью. При этом смесь хорошо заполняет опалубочную форму и пространство между густорасположенными арматурными стержнями. Вместе с тем при снижении вязкости смеси в результате вибрирования ее частицы под действием гравитационных сил стремятся занять по отношению друг к другу наиболее устойчивое положение. Это приводит к взаимоукупорке частиц, т. е. к наиболее плотному их расположению в форме. Одновременно в зоне вибрации создается повышенное давление, вследствие чего воздух интенсивно вытесняется из бетонной смеси. Эти взаимосвязанные процессы обеспечивают получение бетона с плотной структурой и хорошего качества. Вибрирование характеризуется двумя параметрами: частотой и амплитудой колебаний, причем в данном случае амплитуда — наибольшее отклонение колеблющейся частицы от положения равновесия, выраженное в миллиметрах. Эти параметры взаимосвязаны: низкочастотные вибраторы имеют большую амплитуду колебаний, и наоборот. Выпускаемые нашей промышленностью вибраторы по вибрационным характеристикам можно подразделить на низкочастотные с числом колебаний до 3500 в 1 мин и амплитудой до 3 мм, средне-частотные, имеющие 3500—9000 кол/мин и амплитуду 1—1,5 мм; высокочастотные с частотой 10 000—20 000 кол/мин и амплитудой 0,1—1 мм. Низкочастотные вибраторы с наибольшим эффектом применяют для уплотнения бетонных смесей с крупностью заполнителя 50— 70 мм и более, среднечастотные — при крупности 10—50 мм, высокочастотные — при крупности до 10 мм, т. е. мелкозернистых бетонов. По способу воздействия на бетонную смесь вибраторы подразделяют на внутренние (глубинные), погружаемые рабочим органом (корпусом) в слой бетонной смеси, и непосредственно передающие колебания через корпус. Внутренние вибраторы подразделяют на вибробулавы и вибраторы с гибким валом. Поверхностные вибраторы, устанавливаемые на слой бетонной смеси, передают ей колебания через рабочую площадку или вибробрус. Наружные в ибр а тор ы укрепляют на опалубке, через которую они передают колебания бетоннной смеси. По роду питающей энергии различают вибраторы электромеханические, электромагнитные и пневматические. По использованию вибраторы подразделены на одиночные и вибропакеты, используемые для уплотнения бетонной смеси в большеобъемных блоках. При уплотнении бетонной смеси внутренними вибраторами толщину укладываемых слоев принимают не более 1,25 от их рабочей части. Для лучшего сцепления между отдельными слоями вибратор частично заглубляют в ранее уложенный слой. Продолжительность вибрирования в одной точке зависит от типа вибратоpa и технологических характеристик бетонной, смеси, в частности ее подвижности. Чем меньше подвижность уплотняемой смеси, тем больше длительность ее виброуплотнения. Следует помнить, что при недостаточной продолжительности вибрирования смесь окажется недоуплотненной, а бетон — пористым и некачественным. Чрезмерно же длительное вибрирование приводит к расслоению смеси и ухудшению качества бетона. В каждом случае опытным путем определяют оптимальное время вибрирования. Ориентировочно для внутренних вибраторов оно равно 20—50 с. Степень виброуплотнения определяют визуально. Основными признаками достаточного виброуплотнения служат: прекращение оседания бетонной смеси, появление на ее поверхности цементного молока и прекращение выделения пузырьков воздуха. По окончании виброуплотнения смеси на одной позиции во избежание появления пустот вибратор медленно вытаскивают, не выключая его, и переставляют на новую позицию. Расстояние между позициями не должно превышать полутора радиусов действия вибратора, причем зоны вибрирования должны перекрывать друг друга. Радиус действия зависит от подвижности бетонной смеси и типа вибраторов. Для вибратора с гибким валом И-116А он колеблется от 25 до 50 см, для вибробулавы И-50А — от 45 до 50 см. Для получения качественного бетона особенно тщательно необходимо вести виброуплотнение смеси в углах опалубки и у ее стенок, в местах с густорасположенной арматурой, на перегибах конструкции. Чтобы не нарушить сцепления бетона с арматурой или закладными деталями, не следует устанавливать на них работающие вибраторы. Поверхностными вибраторами бетонную смесь уплотняют отдельными полосами с перекрытием провибрированной полосы на 10—15 см. Толщина слоев, прорабатываемых поверхностными вибраторами, составляет 25—30 см; продолжительность работы на одной позиции от 20 до 60 с. Окончание вибрирования определяют по внешним признакам, которые перечислены выше. При перестановке поверхностный вибратор специальным крючком отрывают от бетона и перемещают на новую позицию. Не рекомендуется медленно протаскивать работающий вибратор по поверхности бетона, так как при этом затруднительно вести контроль качества виброуплотнения. Вибробрус (виброрейку) в процессе виброуплотнения медленно перемещают по специальным направляющим, укладываемым по краям бетонируемой полосы. Наружные вибраторы жестко крепят к опалубке. С их помощью можно уплотнять смесь на глубину до 25 см. При бетонировании высоких конструкций (например, колонн или стен) устанавливают несколько вибраторов по высоте, включая их по мере укладки бетонной смеси. Можно пользоваться одним вибратором, переставляемым с места на место, при наличии приспособлений для быстрого его закрепления. Продолжительность работы поверхностного вибратора на одной стоянке 50—90 с. Для обеспечения бесперебойного и качественного виброуплотнения на рабочем месте должны находиться запасные вибраторы. Способ уплотнения бетонной смеси вакуумированием основан на принципе отсоса из нее излишней воды и воздуха. При отсосе частицы смеси сближаются, снижая ее пористость и усадку и улучшая качество бетона. Так, прочность вакуумированного бетона повышается на 15—20% по сравнению с визированным бетоном. Вакуумирование применяют для уплотнения бетона в тонких конструкциях, имеющих большую развернутую поверхность (например, при бетонировании сводов, оболочек и куполов). Наибольшая толщина слоя бетона, прорабатываемого вакуумированием, 30 см. Вакуумирование смеси можно вести несколькими способами: с помощью опалубочных вакуум-щитов (при бетонировании тонких вертикальных или наклонных стенок); переносными вакуум-ящиками, которые устанавливают сверху на уложенный бетон; при помощи вакуум-трубок, устанавливаемых внутрь бетонной конструкции; комбинированным способом, сочетающим в себе признаки первых трех. В комплект оборудования для вакуумирования входят вакуум-насос, ресивер, всасывающие шланги и вакуум-щиты (вакуум-трубки). Вакуум-щит состоит из каркаса размером 100X125 см с герметизирующей прокладкой по контуру. В нижней части щита имеется основа из двух стальных сеток и натянутой по ним фильтрующей ткани. Между крышкой щита и фильтрующей частью образуется полость; при создании в ней вакуума из бетона отсасывается воздух и свободная вода, в результате чего бетон уплотняется. Вакуумирование смеси ведут при степени разрежения в системе не менее 70 кПа. По окончании вакуумирования вакуум-щиты отсоединяют от системы. В полости попадает воздух, и они легко отстают от бетона. Щиты снимают и переставляют на новые позиции.

Влияние амплитуды и частоты колебания

Частота колебания частиц и их амплитуда взаимосвязаны, что позволяет применять в промышленных условиях разные режимы вибрирования для смесей разной консистенции. Смеси с крупнозернистой фракцией заполнителя вибрируют при сравнительно невысокой частоте (3000-6000 колебаний в минуту), но довольно большой амплитуде, тогда как при виброуплотнении мелкозернистых смесей используется вибрация высокой частоты – до 20000 колебаний в минуту, но с малой амплитудой.

Схема вариантов уплотнения бетона: а) глубинным вибратором; б) пакетом глубинных вибраторов; в) вибратором с гибким валом; г) поверхностным вибратором; д) наружным вибратором; е) изменение прочности бетона в зависимости от времени его уплотнения.

Кроме таких параметров работы вибромеханизма, как амплитуда и частота, на качество уплотнения в результате вибрации влияет и продолжительность самого процесса. Для всех видов бетонных смесей, в зависимости от их текучести, есть свое оптимальное время уплотнения вибрацией, на протяжении которого смесь эффективно уплотняется и по истечении которого затраты энергии непропорциональны эффективности дальнейшего уплотнения. При продолжении уплотнения сверх этого времени прироста плотности не наблюдается в целом. Более того, существует риск, что бетонная смесь начнет расслаиваться на отдельные компоненты в зависимости от их свойств – например крупнозернистая фракция заполнителя и цементный раствор. В результате качество конечного бетонного изделия будет снижено из-за неравномерного распределения плотности и пониженной прочности в отдельных частях его частях.

Продолжительное вибрирование в экономическом отношении невыгодно, так как связано с большими затратами электроэнергии и трудоемкостью всего процесса, из-за чего производительность формовочной линии существенно снижается.

Позитивно влияет на эффективность уплотнения совпадение частоты собственных колебаний частиц раствора с частотой вынужденных колебаний виброуплотнителя. Но тут нужно принимать во внимание тот факт, что смесь является совокупностью разных фракций с различными размерами частиц – от микрометров для цементного раствора до нескольких сантиметров для крупного бетонного заполнителя. Соответственно, наиболее эффективной технологией уплотнения будет применение разных частот – так называемого поличастотного уплотнения, так как частота собственных колебаний для частиц разного размера и массы будет разной.

При проведении технико-экономической оценки необходимо учитывать вышесказанное – при увеличении энергии уплотнения эффективность уплотнения возрастает, что также снижает продолжительность процесса и повышает рентабельность.

Коэффициент уплотнения

Очевидно, что после уплотнения бетонная смесь уменьшится в объеме, из нее будет удален весь воздух, поэтому заказывать готовый бетон или подготавливать его самостоятельно следует принимая во внимание коэффициент уплотнения бетонной смеси. Готовым смесям, производящимся на специальных заводах характерен строгий коэффициент уплотнения бетона по СНиПу (к=1,02), что означает уменьшение объема смеси в конструкции на 2% от залитой.

Коэффициент уплотнения асфальтобетона несколько выше и кроме того зависит от зернистости конкретной смеси и даже от объекта, подвергающегося асфальтированию:

  • Тротуарная дорожка.
  • Отмостка здания.
  • Автотрасса.

Усредненный коэффициент уплотнения асфальтобетонной смеси принимают к расчету в количестве 5% (к=1,05). Исходя из этих цифр, рассчитывается потребность в бетонной или асфальтобетонной смеси для работы на объектах строительства.


Несоблюдение СНиПа – низкое качество продукта

Правильно уплотненный конструктив в последствии (после набора бетоном расчетной прочности) возможно одолеть исключительно специальным оборудованием:

  • К примеру, может потребоваться резка железобетона алмазными кругами.
  • Алмазное бурение отверстий в бетоне также применяется к наиболее плотным элементам.

Чем быстрее начать процесс вибрации, тем более качественным получится результат. Поэтому при блочном производстве готовая продукция сразу отправляется на вибрационную установку. Автоматическое оборудование в течении заданного времени уплотняет смесь практически до теоретического максимума. Такая плотность обозначается цифрой 1. Это значение показывает, что коэффициент уплотнения бетонной смеси наилучшей.

При монолитном строительстве добиться подобного результата сложнее. Невозможно стены или перекрытия подвергнуть полноценному вибрированию. Применяемые устройства способны приблизится к этому показателю очень близко. Считается, что коэффициент 0,98 и выше станет отличным результатом. Высчитывается он специальными приборами и расчетами.

Предлагаем ознакомиться Морковная запеканка как в детском саду

Но точно проверить затвердевшую массу бетона можно только в условиях лаборатории, поэтому на строительных площадках следят за выполнением технологии и времени вибрации. Правильно подобранное оборудование, оптимальные методы и соблюдение рекомендуемого режима обработки гарантирует высокие прочностные характеристики бетона и минимальную усадку после затвердевания.

Вибростановки и виброплощадки

Виброуплотнение бетонного раствора производится как стационарными, так и переносными средствами. Использование переносных средств в технологии уплотнения для сборного железобетона довольно ограничено. Их промышленное использование в основном сводится к формованию больших, тяжеловесных изделий на стендах.

Виброплощадки применяются в заводском производстве сборного железобетона тех типов заводов, которые работают по конвейерной и поточно-агрегатной схемам. Существует большое разнообразие конструктивных особенностей и типов виброплощадок – электромагнитные, электромеханические, пневматические. По характеру колебаний – ударные, гармонические, комбинированные. По форме колебаний – круговые направленные, горизонтальные, вертикальные. По конструктивным схемам стола – сплошная верхняя рама, образующая стол с одним или несколькими вибрационными валами или собираемая из отдельных виброблоков, которые в целом представляют собой одну вибрационную поверхность с расположенной на ней формой со смесью. Чтобы прочно закрепить форму с раствором, на столе площадки предусмотрены пневматические электромагниты или механические зажимы.

Схема вибростола с размерами

Виброплощадка исполняется в виде плоского стола, опирающегося посредством пружинных опор на станину (раму) или на неподвижные опоры. Назначение пружин – гасить колебательные движения стола, таким образом не допуская их воздействия на опору, что неизбежно привело бы к разрушению. В нижней части к устройству крепится вибровал с располагающимися на его поверхности эксцентриками. Вал приводится во вращение от электромотора, движение эксцентриков вызывает колебания стола, которые затем передаются массе бетона и вызывают уплотнение бетонной смеси. Мощность виброплощадки измеряется ее грузоподъемностью – массой бетонного изделия, взятого вместе с формой, – и колебается в пределах от 2 до 30 т.

Уплотнение бетона. Механический и ручной способы

Наиболее ответственной манипуляцией при укладке бетонной смеси является ее тщательное уплотнение. От качества выполнения уплотнительной процедуры наряду с другими аспектами зависят физико-технические характеристики готового бетонного изделия или конструктива. Во время процесса из бетона удаляются пузырьки воздуха, что повышает плотность и однородность свежеуложенной смеси, а также сцепление с элементами армокаркаса и закладными деталями.

Обязательное уплотнение бетонного раствора – показатель надежности и качества

Способы уплотнения бетона

В зависимости от объема бетонных работ и технико-эксплуатационных требований к сооружаемой конструкции применяют различные способы уплотнения бетонной смеси.

Уплотнение вручную

Укладка и уплотнение бетонной смеси вручную практикуется в частном строительстве, когда необходимо экономить денежные средства, либо нет возможности использовать специальное оборудование.

Выполнять подобные манипуляции своими руками задача не из легких, поэтому речь идет, конечно же, о небольших объёмах бетонной смеси. Чаще всего в подобных обстоятельствах и сам процесс приготовления раствора выполняется также самостоятельно. (См. также статью Обеспыливание бетона: как сделать.)

Такое уплотнение можно выполнить с помощь подручных средств:

  • Лома.
  • Лопаты.
  • Ручных трамбовок и штыковок, и других приспособлений.

Ручная трамбовка – многие частные застройщики делают подобные инструмента из деревянных брусков

Любым из вышеуказанных инструментов проделываются следующие процедуры:

  • Погружение подручного средства в залитую раствором емкость через каждые 5-10 см площади, это позволяет удалить лишний воздух.
  • Перемешивание свежезалитой массы, для равномерного распределения раствора.

Штыкование осуществляется непосредственно во время процесса заливания раствора

Механическое уплотнение

Механический способ уплотнения используется при работе с большими объемами бетонной смеси.

Данный процесс выполняется посредством различных специализированных приборов:

  • Поверхностных вибраторов. Такими механизмами уплотняют бетонные смеси в конструкциях с большой площадью поверхности или небольшой толщиной слоя: Плитных основаниях.
  • Полах.
  • Подпорных стенах.
  • Плотинах.
  • Дорожного полотна.

Поверхностный вибратор состоит из плоской плиты, соединенной с вибромеханизмом, похожим на опалубочные вибраторы. Виброплита используется после уплотнения внутренними вибраторами, успешно выравнивая большие поверхности. (См. также статью Герметик для бетона: особенности.)

Эффективная глубина вибрирования поверхностными виброприспособлениями составляет от 20 до 30 см.

К сведению! Дороги с асфальтобетонным покрытием постоянной ширины и большой протяженности уплотняются с помощью так называемой виброрейки.

  • Внутренний вибратор для уплотнения бетона считаются наиболее эффективным по сравнению с механизмами другого типа, так как исходящая от него энергия передается непосредственно бетонной смеси. Кроме того, внутренние вибраторы просты в управлении и их можно использовать в труднодоступных местах.

Внутренние вибраторы устанавливаются по возможности в вертикальном положении. Переставляя вибратор в другое место на расстоянии от 45 до 75 см от предыдущего положения, следует осторожно и медленно извлекать его рабочую часть из бетона. Оптимальная скорость погружения вибратора 2-3 см в секунду.

На фото модель современного глубинного вибратора

Внимание! Не следует использовать вибраторы для распределения бетонной смеси по форме. Это приведет к расслоению бетона.

Что бы получить гладкую поверхность бетона после удаления опалубки, специалисты рекомендуют погружать вибратор вблизи опалубки на расстоянии около 10 см. Время работы вибратора в одном положении должно составлять от 5 до 15 секунд. О завершении процесса также подскажут появившееся вокруг вибратора цементное молочко и характерность звука работы прибора.

Виброуплотнение применяется и для выравнивания поверхности

Следует понимать, что уплотнение выполняется послойно. Каждый последующий слой вибрируется на полную глубину и желательно с погружением в предыдущий слой на 3-5 см, чтобы хорошо уплотнить стык между слоями.

  • Вибраторы, закрепленные на опалубке. Опалубочные вибраторы очень жестко скрепляются с опалубкой или формой и уплотняют бетонную смесь, заключенную в них, вызывая колебания формы, передаваемые бетону. Опалубочные вибраторы просто незаменимы при бетонировании конструкций со сложным, частым армированием или изготовлением изделий малых и нестандартных форм.

Примечание! К прочности, жесткости и надежности опалубки и форм в случае применения опалубочных вибраторов, предъявляются повышенные требования, так как им придется преодолевать вибрационные нагрузки.

Применение опалубочных вибраторов приводит к образованию в теле бетона воздушных пузырьков в основном в верхнем слое. Поэтому для улучшения качества уплотнения верхний слой порядка 50-60 см следует доработать вручную или, если возможно, с помощью внутреннего вибратора.

Подобное оборудование позволяет производить два процесса одновременно: уплотнение и выравнивание

Все виды вибраторов делятся на пневматические и с электроприводом. Преимуществом пневматических вибраторов перед электрическими заключается в их простоте в обращении и безопасности. Однако при использовании в холодное время года из-за быстрого снижения давления воздуха существует опасность замерзания цилиндров пневмовибратора.

С этим возможно бороться несколькими способами:

  • Подавая в помещение сухой воздух.
  • Распыляя в воздуховод жидкое масло либо другие вещества, предотвращающие замерзание.
  • Подавать воздух, пропуская его изначально через прогреваемый змеевик.

Компрессоры, подающие воздух весьма габаритные и цена на них превышает стоимость электрогенераторов, однако в некоторых обстоятельствах без них не обойтись.

Рекомендации к процессу уплотнения бетона

Чтобы избежать нарушения однородности бетонной смеси и неравномерности ее уплотнения соблюдайте следующие предохранительные меры:

  • При устройстве опалубки следите за плотностью соединения ее деталей. Не допускайте образования щелей (через них может происходить выдавливание бетона). Опалубка должна быть гладкой, чтобы не оставлять на теле бетона вмятины. На бетоне могут появиться раковины, пустоты.

Важно! Все детали опалубки, включая клинья и распорки должны быть надежно закреплены, без возможности смещения.

  • Виброуплотнение бетона в одном положении вибратора не должно продолжаться слишком долго, от этого так же нарушается однородность смеси, образовываются каверны.
  • Инструкция к уплотнению рекомендует и в целом не затягивать весь процесс, так как это может привести к расслоению смеси. Это происходит из-за того, что более крупные фракции сбиваются книзу, а на поверхности скопится исключительно цементный раствор.

Вот такие «пустоты» возникают в бетонных поверхностях, которые не были уплотнены

Коэффициент уплотнения

Очевидно, что после уплотнения бетонная смесь уменьшится в объеме, из нее будет удален весь воздух, поэтому заказывать готовый бетон или подготавливать его самостоятельно следует принимая во внимание коэффициент уплотнения бетонной смеси. Готовым смесям, производящимся на специальных заводах характерен строгий коэффициент уплотнения бетона по СНиПу (к=1,02), что означает уменьшение объема смеси в конструкции на 2% от залитой.

Коэффициент уплотнения асфальтобетона несколько выше и кроме того зависит от зернистости конкретной смеси и даже от объекта, подвергающегося асфальтированию:

  • Тротуарная дорожка.
  • Отмостка здания.
  • Автотрасса.

Усредненный коэффициент уплотнения асфальтобетонной смеси принимают к расчету в количестве 5% (к=1,05). Исходя из этих цифр, рассчитывается потребность в бетонной или асфальтобетонной смеси для работы на объектах строительства.

Несоблюдение СНиПа – низкое качество продукта

Правильно уплотненный конструктив в последствии (после набора бетоном расчетной прочности) возможно одолеть исключительно специальным оборудованием:

  • К примеру, может потребоваться резка железобетона алмазными кругами.
  • Алмазное бурение отверстий в бетоне также применяется к наиболее плотным элементам.

Вывод

Как вы понимаете, процесс увеличения плотности бетона необходимо для усиления конструкции и продления ее эксплуатационного срока. И это очень важный момент, так как речь идет о нескольких годах, о повышенной защите к механическим повреждениям и экономии на ремонтных работах, которые могут в будущем потребоваться.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Процесс прессования

Прессование как способ уплотнения при изготовлении железобетонных изделий применяется редко, несмотря на то что по техническим показаниям является весьма эффективным, так как позволяет получить высокопрочный бетон с большой плотностью при очень незначительном расходе цемента (100-150 кг/м3 бетона). Причины, препятствующие распространению этого способа, носят сугубо экономический характер. Давление, при котором бетон эффективно уплотняется, составляет 10-15 МПа и более, то есть для того чтобы уплотнить изделие из бетона, на каждый 1 м2 нужно приложить усилие, равное 10-15 МН (миллионов Ньютон). Прессы, обладающие такой мощностью, применяют только в судостроительстве для прессования корпусов кораблей, и их стоимость настолько высока, что полностью исключает экономическую рентабельность при использовании.

При приготовлении бетонных смесей прессование используется лишь как дополнительное средство механической нагрузки, прикладываемое при ее виброуплотнении. При этом нужная величина давления не превышает 0,5-1 кПа. Технически такое давление достигается приложением статической нагрузки во время перемещения отдельных частиц бетонного раствора.

В зависимости от вида штампов, различают прессование плоскими или профильными. Последние используются для передачи своего профиля бетонному изделию. Таким образом изготавливаются некоторые типы ребристых панелей и лестничные марши. Прессование в процессе изготовления ребристых панелей носит название штампования. Одной из разновидностей прессования является прокат. В данном случае передача давления бетонной смеси осуществляется посредством небольшой площади катка, что позволяет уменьшить расход энергии из-за уменьшения давления прессования. Однако существует риск, связанный с пластическими свойствами смеси – при недостаточных может произойти сдвиг бетонной массы или даже разрыв прессующим валиком.

Центрифугирование

При центрифугировании вращающаяся смесь уплотняется благодаря прилеганию к внутренней поверхности формы. В результате процесса центрифугирования, из-за различной плотности компонентов бетонного раствора и содержащейся в нем воды из него удаляется до 20-30 % жидкости, благодаря чему получается высокопрочный бетон.

Центрифугирование позволяет легко получить из бетона изделия с высокой плотностью, прочностью (40-60 Мпа) и долговечностью. Для этого метода требуется достаточно много цемента, чтобы конечная бетонная смесь обладала большой связностью (400-450 кг/м3). В противном случае под действием центробежной силы произойдет разделение на несколько слоев, так как зерна большего размера и массы будут сильнее стремиться прижаться к краю формы центрифуги, нежели зерна меньшего размера. С помощью этой технологии формируют стойки под фонари, опоры линий электропередач или трубы.

Вакуумирование раствора

При использовании метода вакуумирования создают разрежение воздуха до давления в 0,07-0,08 Мпа, благодаря чему лишний воздух, вовлеченный в раствор, и излишки воды удаляются под действием разниц давления. Бетон занимает освободившееся при этом место, благодаря чему плотность смеси возрастает. Присутствие вакуума тоже оказывает прессующее воздействие на бетонную массу, величина этого воздействия равняется разнице между давлением вакуума и атмосферным давлением. Благодаря такому воздействию смесь дополнительно уплотняется.

Виброуплотнение


Виброуплотнение — технология, подразумевающая применение специального оборудования в ходе укладки бетона. Под действием колебаний, которые создают эти машины, компоненты бетона уплотняются, воздух выходит наружу.
Чтобы выполнить виброуплотнение, используют вибраторы для бетона с определенной частотой колебаний:

  • высокочастотные (до 20 000 вибраций в минуту) — оптимальны для придания большей плотности мелкозернистым растворам, фракцией не более 10 мм;
  • низкочастотные (3500 вибраций в минуту) — подходят для работы с растворами, имеющими крупную фракцию, более 50 мм.

Данный способ считается наиболее эффективным для увеличения плотности смеси. При этом качество бетона оказывается выше, чем уплотненного вручную или неуплотненного.

Сочетание вакуумирования с вибрированием

Процесс вакуумирования предпочитают сочетать с вибрированием. Во время вибрирования бетонного раствора, подверженного вакуумированию, твердые компоненты смеси интенсивно заполняют поры, образовавшиеся на месте пузырьков воздуха и капель воды. Однако у вакуумированния в техническом аспекте есть существенный технико-экономический недостаток – большая продолжительность процесса, который в зависимости от свойств бетона и величины разреза на каждый 1 см толщины занимает около 1-2 мин.

Толщина слоя, поддающегося вакуумированию, не превышает 12-15 см. По этой причине вакуумируют преимущественно конструкции больших размеров с целью придания их поверхностному слою большей плотности.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]