Измерение прочности бетона неразрушающим методом

Теоретическая информация

Бетоном является строительный каменный материал искусственного происхождения, который получается в процессе отвердения правильно подобранной уплотненной смеси связующих веществ (цемент, песок, щебень, вода и др. заполнители). Для увеличения способности к противостоянию агрессивным средам и усиления прочностных свойств используют специальные добавки. Смесь всех этих компонентов до того, как она затвердела, принято называть смесью.

Каменная основа образуется за счет песка и щебня. После добавления в смесь воды образуется цементное тесто, которое заполняет промежутки между песком и щебнем, обво­лакивая их, и выполняет изначально функцию смазки для заполнителей, при помощи которой смесь становится подвижной (текучей). В процессе отвердения зерна заполнители связываются, образуя искусственный монолитный камень, называемый бетоном. При сочетании с арматурой из стали получаемую конструкцию называют железобетонной.

Неразрушающий контроль

Компоненты должны быть чистыми, без примесей, а вода – пресной.

Это такой вид контроля параметров и свойств, который не должен приводить к нарушению пригодности бетона к последующей эксплуатации или использованию. Контроль неразрушающего типа приобретает особую важность при возведении и во время эксплуатации особо важных компонентов, конструкций или изделий.

Проводя определение прочностных показателей при помощи неразрушающих методов контроля, очень важно понимать, что результаты всех этих методов основаны на косвенных характеристиках. Отдать предпочтение тому или иному методу невозможно, они все имеют свои плюсы, минусы и ограничения применения. Для более точного определения лаборатория должна быть оснащена аппаратами неразрушающего контроля, включающими все методы контроля. Начальный этап существования здания характеризуется осуществляемым контролем на соответствие линейных размеров проекту и отсутствие значительных отклонений от норм и правил строительства.

Для этого используют:

  • всевозможные линейки;
  • нутромеры;
  • рулетки;
  • скобы;
  • штангенциркули;
  • микроскопы;
  • щупы и др. специальное оборудование.

Схема защиты

Отклонения конструкций от допустимых горизонтальных и вертикальных показателей обычно измеряются:

  • нивелиром;
  • теодолитом;
  • поверочной линейкой.

В уже построенных зданиях прочностные показатели отдельных элементов конструкции обычно определяются двумя методами.

  1. В одном из них конструкцию нагружают вплоть до момента ее разрушения, определяя таким образом максимальную несущую способность. Но такой метод является очень дорогостоящим и нецелесообразным с экономической точки зрения.
  2. Намного привлекательнее и более удобнее неразрушающие методы, в которых подразумевается использование специальных приборов для оценки состояния конструкций. Такие случаи подразумевают обработку получаемых результатов и значений с помощью специальных компьютерных программ, позволяющих с достаточной точностью получать значения конечных характеристик.

Допустимая погрешность при проведении испытаний – наиболее весомый фактор определения методов и средств контроля и измерений. При этом очень важны легкость в обработке результатов и удобство в проведении работ.

Неразрушающие методы опираются на косвенные показатели:

  • отпечаток;
  • напряжение, приводящее к частичным (локальным) разрушениям конструкции;
  • энергия, затрачиваемая при ударе.

Подробнее о наиболее часто применяемых методах контроля неразрушающего типа для бетона и др. строительных материалов будет описываться далее.

Неразрушающий контроль физическими методами воздействия

К категории таких способов относятся технологии акустического воздействия и проникающих излучений. Они предоставляют возможность судить о качественных характеристиках конструкции по внутренней структуре, так как измеряется скорость распространения волн упругих колебаний непосредственно по испытываемому материалу.

Чаще всего используется прибор для определения прочности бетона ультразвуковым методом. Он позволяет снять показания без оказания механического воздействия на конструкцию. С его помощью измеряется скорость прохождения ультразвуковых волн через слой бетона. При сквозном исследовании датчики могут располагаться с двух сторона, а при поверхностном – с одной.

Контроль с использованием ультразвука считается наиболее информативным и достаточно простым. Он позволяет не только оценить прочностные параметры, но и найти возможные дефекты внутри слоев. Используемый прибор имеет несколько режимов работы, которые представлены в таблице.

Режим Описание
Калибровка Позволяет приспособить прибор к характеристикам бетона. Измеряются поперечные волны внутри затвердевшей смеси, определяются важные параметры, необходимые для снятия качественных образов структуры массива.
Обзор Дает возможность произвести быстрое изучение внутреннего строения конструкции. Измеряется толщина, обнаруживаются дефекты или предметы, находящиеся в массиве (арматура, трубы, кабели).
Сбор Собираются данные об ультразвуковых исследованиях. Запись производится в различных положениях. Сканирование осуществляется в виде полосы (или особой ленты).
Просмотр Применяется для анализа данных на длительном отрезке времени. На экране в данном случае присутствуют все типы изображений. Они могут отображаться по очереди или сразу.

Ультразвуковой измеритель прочности бетона позволяет проводить многочисленные испытания многократно, осуществляя постоянный контроль изменения параметров. Недостатком считается погрешность при соотношении акустических характеристик с базовыми параметрами.

Варианты локальных разрушений

Такие неразрушающие методы для контроля прочности являются самыми точными, так как в них разрешается использование универсальной градуировочной зависимости, которая подразумевает изменение всего двух параметров:

Таблица видов бетона

  • степень крупности заполнителя, которая принимается равной 1,0, если крупность меньше чем 5,0 см и 1,1, если крупность больше 5,0 см;
  • тип (легкий или тяжелый).

Способ отрыва со сколом и способ скола конструктивного ребра характеризуется регистрацией усилий, необходимых для скола части ребра конструкции или локального разрушения бетона по ходу выдергивания из него анкерной конструкции.

Способ отрыва со сколом – единственный метод неразрушающего контроля прочности, для которого стандартами предусмотрены градуировочные зависимости. Этот метод наиболее точен, однако обусловлен большими трудозатратами, которые необходимы для бурения шпуров и установки анкеров. Главным минусом этого метода является невозможность применения в конструкциях, имеющих густое армирование и тонкие стены.

В конструкциях с густым армированием, когда способ отрыва со сколом и способ скалывания ребра невозможно использовать, прочность бетона можно определить методом отрывания металлических дисков. Он довольно точный, но гораздо менее трудоемкий в сравнении со способом отрыва со сколом. К минусам метода относят требование в наклеивании дисков за несколько часов до начала испытаний. Время зависит от условий и используемого клея.

Способ скола конструктивного ребра обычно применяется для определения прочности линейных элементов (колонны, сваи, балки, ригели, перемычки). Для начала испытаний требуются предварительные подготовительные работы. Причем при нарушениях защитного слоя и защитном слое, имеющем толщину менее 2,0 см, способ недопустим.

Схема кладки из пенобетона.

Метод отрывания металлических дисков характеризуется регистрацией напряжений, необходимых для локальных бетонных разрушений во время отрыва от его поверхности стального диска, равных усилиям, затрачиваемым на отрыв, деленных на проекционную площадь отрываемой бетонной поверхности на плоскость диска. В современной жизни этот метод применяется очень редко.

Неразрушающие технологии контроля прочности бетона

Испытание бетона неразрушающим методом предполагает оценку состояния бетонных конструкций через анализ различных факторов, что влияют на прочность, диаметр арматуры, толщину защитного слоя, влажность, теплопроводность, адгезию и т.д. Особенно актуален данный тип исследований в случаях, когда не известны характеристики бетонного монолита и арматуры, а вот объемы контроля большие.

Указанная группа методов позволяет выполнять исследования как в условиях лаборатории, так и непосредственно на строительной площадке и даже в процессе эксплуатации.

Главные преимущества неразрушающего контроля:

Сохранение целостности конструкции, которая проверяется. Возможность избежать необходимости организовывать лабораторную оценку непосредственно на строительном объекте. Полное сохранение эксплуатационных свойств зданий и сооружений. Достаточно широкая сфера применения.

Несмотря на то, что методов и способов исследования жидкого и застывшего бетона очень много, характеристик также немало, основным свойством и показателем является прочность. Именно от прочности зависят сфера применения и условия эксплуатации, надежность и долговечность конструкции. Так, например, если бетон будет морозостойким и пластичным при заливке, с лучшими разноплановыми характеристиками, но недостаточно прочным для выдерживания проектных нагрузок, здание просто обрушится.

Прочность – определяющий фактор бетона и проверять ее нужно очень тщательно. Все испытания проводят на базе ГОСТов: 22690-2015, 17624-2012 (процедура обследований), 18105-2010 (описаны общие правила проверки). Использование неразрушающих методов предполагает применение механических способов (вдавливание, скол, отрыв, удар) и ультразвукового исследования.

Исследование неразрушающего контроля бетона осуществляется по графику, обязательно в установленном проектом возрасте или же по необходимости. Благодаря исследованиям удается оценить отпускную/распалубочную прочность, сравнить полученные реальные показатели свойств материала с паспортными.

Используемые методы неразрушающего контроля:

    Прямые (местные разрушения) – скалывание ребра, выполнение отрыва со скалыванием, отрыв диска из металла. Косвенные – упругий отскок, ударный импульс, использование пластической деформации, а также метод ультразвукового исследования.

Местные разрушения условно относятся к неразрушающим методам. Их главный плюс – достоверность и точность результатов. Испытания регламентирует ГОСТ 22690-2015.

Прямые неразрушающие методы контроля прочности бетона:

Отрыв со скалыванием – оценивается усилие, нужное для разрушения бетона в процессе вырывания из него анкера. Из преимуществ стоит отметить высокий уровень точности, наличие градуировочных зависимостей по ГОСТу, из недостатков – невозможность применять для оценки густоармированных и тонкостенных сооружений, трудоемкость. Скалывание ребра – измеряется усилие, нужное для скалывания бетона в углу конструкции. Обычно способ используют для выявления прочности линейных сооружений (колонны квадратного сечения, сваи, опорные балки). Главные плюсы метода – простота реализации, отсутствие необходимости в предварительной подготовке, минусы – не применяется для бетона слоем больше 2 сантиметров и поврежденного монолита. Отрыв металлического диска – фиксируют усилие, разрушающее бетон в момент отрыва от него диска из металла. Метод использовали часто в советское время, сегодня практически не применяют из-за наличия ограничений в плане температурного режима. Достоинства: можно проверять густоармированные конструкции, низкий уровень трудоемкости, недостатки – необходимость в предварительной подготовке (диски клеят на поверхность бетонного монолита за 3-24 часа до начала проверки).

Главные недостатки местных разрушений для измерения прочности бетона – необходимость рассчитывать глубину пролегания арматуры, высокая трудоемкость, частичное повреждение поверхности монолита, что может (пусть и несущественно) влиять на эксплуатационные свойства.

Методы ударно-импульсного воздействия более производительны, но проверяют лишь верхний слой бетона толщиной в 25-30 миллиметров, поэтому их применение ограничено. Поверхность нужно зачистить, удалить поврежденный слой, привести градуированные зависимости приборов в полное соответствие с фактической прочностью монолита по результатам испытаний в прессе контрольных партий.

Сейчас читают: Керамзитобетон для постройки частного дома

Для измерения прочности бетона часто используют метод ударного импульса – наиболее распространенный вариант, который дает возможность выявить класс бетона, выполняя исследования под различными углами к поверхности, с учетом упругости и пластичности материала.

Боек со сферическим ударником благодаря пружине ударяется о поверхность бетона, при этом энергия удара тратится на его деформацию, появляется лунка (пластические деформации) и реактивная сила (упругие деформации).

Электромеханический преобразователь механическую энергию выполненного удара превращает в электрический импульс, реальные результаты получают в единицах определения прочности на сжатие. Для исследований используют молоток Шмидта.

Преимущества метода: простота, компактное оборудование, возможность установить класс материала, недостатки – низкая точность из-за определения прочности слоя до 5 сантиметров.

Особенности метода упругого отскока:

В испытаниях используют склерометры – специальные пружинные молотки со сферическими штампами. За счет системы пружин реализуется свободный отскок после удара. Фиксация пути ударника при отскоке осуществляется по шкале со стрелкой. Прочность материала определяют по градуированным кривым, учитывающим положение молотка, ведь величина отскока напрямую зависит от направления. Средний показатель исследований считают по данным 5-10 выполненных измерений, между местами ударов расстояние должно быть равно минимум 3 сантиметрам. Диапазон измерений методов – 5-50 МПа, используются специальные приборы. Главные преимущества: простота/скорость исследований, возможность оценить прочность густоармированных изделий. Недостатки: определение прочности бетона реализуется в поверхностном слое глубиной 2-3 сантиметра, проверки нужно делать часто и много.

Проверка прочности бетона методом пластической деформации – самый дешевый способ, определяющий твердость поверхности бетона измерением следа, оставленного стальным стержнем/шариком, что встроен в молоток. Молоток располагают в перпендикулярной плоскости поверхности монолита, делают пару ударов. Отпечатки на бетоне и бойке измеряют. Полученные данные фиксируют, ищут среднее значение, по полученному соотношению размеров отпечатков определяют характеристики бетонной поверхности.

Прибор для исследований способом пластических деформаций работает на вдавливании штампа ударом или статическим давлением. Редко применяют устройства статических давлений, чаще используются приборы ударного действия (пружинные/ручные молотки, маятниковые устройства с дисковым/шариковым штампом).

Выдвигаются такие требования: диаметр шарика минимум 1 сантиметр, твердость стали штампов хотя бы HRC60, диск толщиной минимум 1 миллиметр, энергия удара 125 Н и более. Метод простой, подходит для густоармированных конструкций, быстрый, но используется для определения прочности бетона марки максимум М500.

Кроме того, есть и другие методы неразрушающего контроля – инфракрасные, акустические, вибрационные, способ электрического потенциала и т.д. Но они используются реже, базовыми считаются ударный импульс, отрыв со скалыванием, ультразвук.

Самым сложным считается контроль конструкций, на которые воздействуют агрессивные среды (химические в виде кислот, солей, масел, термические в формате высоких/низких температур, атмосферные – карбонизация верхнего слоя).

При проведении обследования простукиванием и визуально, смачиванием раствором фенолфталеина ищут слой с нарушенной структурой, удаляют его на участке для контроля, зачищают наждачной бумагой. Потом определяют прочность способами отбора образцов или местных разрушений. В случае использования ультразвуковых и ударно-импульсных приборов шероховатость поверхности монолита должна быть максимум Ra 25.

Ударные методы воздействия

Одним из самых распространенных методов неразрушающего контроля прочности бетона является способ ударного импульса.

В этом методе производят регистрацию энергии удара, которая возникает в тот момент, когда боек соударяется с бетонной поверхностью.

Оборудование, применяемое в данном методе, характеризуется относительно малым весом и объемом занимаемого пространства. Да и определить прочность бетона способом ударного импульса достаточно просто. Все результаты выражаются в тех же единицах измерения, что и прочность на сжатие. Согласно замерам также производят определение класса бетона, производят измерения прочности под разными углами к плоскости объекта, переносят полученные результаты на компьютер.

Молоток Кошкарова является одни из методов определения прочности бетона.

Ударными импульсами называют волны малой энергии, получаемые в результате удара, которые генерируются при помощи подшипников, качения из-за изменений давления и соударения в зоне качения в период работы подшипников и распространяются в элементах подшипника, узле подшипникового механизма и соприкасающихся с ним деталей.

Использование способа ударного импульса имеет следующие основные функции:

  • заблаговременные предупреждения об изменениях в условиях смазки подшипников для выполнения работ по замене смазки согласно ее фактическому состоянию;
  • заблаговременные предупреждения об изменениях в работе подшипников из-за воздействия различных внешних факторов для выполнения мероприятий по их устранению вовремя и в срок (к примеру, дисбаланс, перегрузки и т. п.);
  • заблаговременные предупреждения о дефектах, возникающих в подшипниках, для проведения работ по своевременной их замене;
  • доведение до минимума времени простоя оборудования;
  • доведение до минимума рисков, связанных с отказами оборудования. Обеспечение надежной работы.

Способ упругого отскока представляет собой величину обратного отскока, получаемую в результате соударения ударника с бетонной поверхностью. Склерометр Шмидта и различные его аналоги являются наиболее распространенными приборами для проведения испытаний этим методом. Измерение поверхностной твердости бетонной конструкции является основой метода упругого отскока и метода пластической деформации.

Изначально способом упругого отскока определяли твердость металлов. Испытания проводят при помощи приборов, носящих название склерометры, которые представляют собой молотки пружинного типа со штампами в виде сферы. Пружинная система молотка не препятствует свободному отскоку ударника после соударения с бетонной поверхностью или со стальной пластинкой, прижимаемой к бетону. Шкала со стрелкой на приборе фиксирует путь ударника во время его обратного отскока. Сила удара молотком должна составлять не меньше, чем 0,75 Н-м, радиус сферического штампа на конце ударника должен быть не менее 5 мм. Через каждые 500 ударов производят тарировку (проверку) аппарата.

По ходу проведения испытания после каждого соударения делается замер согласно шкале прибора (точность должна составлять одно деление). Результат записывается в специальный журнал ведения работ. Требования, предъявляемые к работам по подготовке мест проведения испытаний (расположение, количество мест ударов и эксперименты для построения кривых тарировки), идентичны требованиям способа пластической деформации.

Схема разрушения бетонной балки.

Способ пластической деформации характеризуется измерениями отпечатка, оставшегося на бетоне после удара по нему шарика из стали. Этот способ измерения прочности уже устарел, но его используют и сегодня, так как для проведения испытаний не требуется дорогостоящего оборудования.

Наиболее широкое распространение для проведения таких испытаний получил молоток Кашкарова. Принцип работы относительно прост. Молоток оснащается специальным съемным металлическим стержнем, который имеет определенную уже известную прочность. Таким молотком ударяют по бетонной поверхности. Затем полученные в результате удара отпечатки на стержне и бетоне измеряются при помощи углового масштаба. Прочность бетона вычисляется соотношением размеров отпечатков.

Устройства для определения прочности бетона способом пластических деформаций основываются на эффекте вдавливания штампа в бетонную поверхность при ударе либо статическом давлении определенной силы. Их применение ограничено. Приборы ударного действия представляют собой ручные или пружинные молотки со штампом в виде сферы (шарик) и маятниковые приборы со штампом в виде шара или диска.

Штампы приборов должны быть:

  • твердостью не меньше чем HRC60;
  • шероховатостью Ra меньше 0,32 мкм. Максимальный износ штампа – до 5 мкм;
  • с диаметром шарика не меньше чем 10 мм;
  • сила удара должна составлять не менее 125 Н-см;
  • толщиной диска не меньше чем 1 мм.

Методы определения прочности бетона

Проводить определение прочности бетона в России можно только с учетом нормативов, установленных стандартом ГОСТ 18105-2010. Классификация используемых методов подразумевает деление на три подгруппы.

  • Разрушающие. Испытание бетона в этом случае проводят с использованием контрольных образцов, подвергающихся твердению в одинаковых с конструкцией условиях, либо изымаемых непосредственно из бетонного монолита после достижения им необходимых показателей твердости. Эти методы определения прочности бетона считаются наиболее точными.
  • Неразрушающие косвенные. К этой категории относят ультразвуковые исследования (по ГОСТ 17624-2012), методы упругого отскока и ударного импульса (ГОСТ 22690-2015). Важно отметить, что эти методы названы так потому что прочность оценивают косвенно, через другой параметр, измеряя, например скорость ультразвука, а по ней вычисляя прочность на основании установленных экспериментально зависимостей. Эти методы определения прочности бетона без предварительно градуировки могут дать погрешность до 30…50%, их нельзя использовать для вычислений, требующих достоверности и точности получаемых значений без корректировок результатов на основе прямых методов.
  • Неразрушающие прямые. Испытание бетона в этом случае можно выполнять одним из двух методов. Первый из них предусматривает отрыв заделанного в бетон металлического анкера и измерение необходимой для этого нагрузки создаваемой при помощи специального оборудования. Второй (в данной подгруппе) метод определения прочности бетона основан на измерении усилия, прилагаемого для скалывания участка внешнего ребра бетонной конструкции.

Все замеры и испытания, в рамках которых производится определение прочности бетона, подразумевают использование специальных инструментов и приборов (измерители прочности бетона), позволяющих гарантировать точность выполняемых процедур. Именно аппаратные измерения дают наиболее достоверный результат и позволяют выполнять все необходимые манипуляции в кратчайшие сроки и без остановки процессов строительства и ведения других работ на объекте.

Разрушающие методы

Любая строительная организация самостоятельно выбирает способы контроля, но согласно требованиям действующим сегодня СНиПов, разрушающий контроль должен производиться обязательно.

Выполнить эти требования можно несколькими способами:

  • прочность бетона определяют на изготовляемых специально образцах. Этот метод применяют при возведении железобетонных конструкций сборного типа и для контроля выхода готовой бетонной смеси на строительной площадке;
  • замеры прочности получают, выпиливая или вырубая образцы непосредственно из конструкции. Пробы берутся в определенных местах. При этом, в зависимости от напряженного состояния, учитывается снижение несущей способности. Места взятия проб должны быть указаны в проектной документации либо определяться проектировщиками по ходу ведения работ;
  • образцы, так называемые “кубики”, изготовленные непосредственно на строительной площадке согласно конкретному технологическому регламенту, для испытаний отправляются в лабораторию. Однако получение бетонных кубиков (их отвердение, хранение) значительно отличается от реального ведения бетонных работ (степени уплотнения и времени твердения смесей). Данные различия значительно снижают правильность результатов, полученных таким методом.

Приборы серии ОНИКС для определения прочности бетона

Современные приборы для определения прочности бетона серий ОНИКС и ПУЛЬСАР, выпускаемые , ориентированы на использование всех имеющихся методов определения прочности и прекрасно подходят для проведения испытаний и в лаборатории и на строительной площадке методами скола ребра, отрыва со скалыванием, по скорости прохождения ультразвука и методом ударного импульса.

Использование высокоточных технических средств гарантирует высокую скорость и точность при фиксации параметров прочности. Это позволяет быстро получать достоверные результаты при определении прочности бетона непосредственно на исследуемом объекте без разрушения бетонного монолита.

Оформление документации

Все результаты, полученные во время испытаний, заносятся в специальный журнал, который должен содержать следующие данные:

  • название конструкции и номер партии;
  • тип измеряемой прочности и ее допустимое значение;
  • тип бетона;
  • способ проведения испытаний (метод), прибор, включая заводской номер;
  • усредненный показатель характеристики косвенной прочности и соответствующий ему показатель прочности бетона;
  • использованные поправочные коэффициенты;
  • результаты испытаний по оценке прочности бетона;
  • ФИО, дата и подпись человека, производившего испытания.

Методы контроля

Существует несколько методов проверки качества ЖБК и каждый из них имеет как свои плюсы, так и некоторые ограничения в применении.

Контроль линейных размеров

Очень простой метод, который заключается в контроле линейных размеров конструкций, а также насколько они соответствуют допустимым отклонениям по вертикали и горизонтали. Применяя этот метод, используют измерительные инструменты (рулетку, линейку, штангенциркуль) и геодезические приборы (нивелир и теодолит).

Измерение прочности и однородности

Чтобы определить прочность бетона, а также однородность его структуры применяют следующие методы:

  • осуществляют местные частичные разрушения (скалывание небольшого куска или ребра, отрыв приклеенных металлических дисков);
  • производят искусственные ударные воздействия: при этом измеряют силу удара и величину отскока;
  • применяют ультразвук.

Все неразрушающие методы контроля прочности бетона хорошо себя зарекомендовали, но полученные с помощью них результаты имеют погрешность, так как точность измеряемых показаний зависит от:

  • влажности изделия;
  • температуры;
  • срока эксплуатации бетона;
  • марки бетона;
  • условий заливки, трамбовки и схватывания;
  • разновидностей пластификаторов.

Осуществление местных разрушений

Производя отрыв со скалыванием, измеряют сопротивление бетона в момент, когда происходит отрыв его фрагмента с помощью анкерного устройства. Используя этот метод, получают довольно точные результаты, но он является трудоемким.

Важно! Подобный метод нельзя использовать при работе со слишком тонкими конструкциями и с густоармированными стенами.

Если надо продиагностировать качество свай, опорных колонн или балок, то чаще всего применяют метод скалывания ребра. При применении данного метода нет необходимости высверливать какие-либо отверстия или проводить дополнительные подготовительные мероприятия.

Важно! Если толщина защитного слоя составляет менее 20 мм, то использовать этот метод не рекомендуется.

Метод стальных дисков заключается в отрыве ранее приклеенных металлических дисков (за 6÷12 часов до начала проверки: зависит от клеящего состава). Данный метод применяют в том случае, если нет возможности использовать два предыдущих из-за различных ограничений.

Все три метода имеют несколько минусов:

  • в процессе работ происходит частичное разрушение стены;
  • до начала работ необходимо определить, на какую глубину заложены арматурные прутья, а также их количество;
  • работы отличаются длительностью и трудоемкостью.

Метод ударного воздействия

Самый широко применяемый метод диагностики, при котором измеряют энергию удара (в момент, когда ударный элемент прикасается к бетонной поверхности). Использование данного метода позволяет получить информацию о классе бетона, его прочности, упругости; качестве уплотнения материала и его однородности. Делают несколько замеров и высчитывают средний показатель.

Сутью метода упругого отскока является измерение длины отскока ударника после его соприкосновения с бетоном. В данном случае производят измерение не только прочности материала, но и его твердости с помощью склерометра.

Используя метод пластической деформации, измеряют размеры отпечатка, который образуется в результате удара шарика из стали о поверхность бетона. Этот способ довольно востребован (из-за невысокой стоимости оборудования), но считается уже устаревшим.

Метод ультразвуковой диагностики

Используя этот метод, проверяют прочность бетона всей конструкции, а также насколько качественно произведено бетонирование; определяют глубину и размер трещин, а также выявляют наличие каких-либо дефектов. С помощью специальных датчиков осуществляют прозвучивание (поверхностное и сквозное). Минусом данного метода является то, что он непригоден для осуществления проверки прочности высокопрочных бетонов.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]
Для любых предложений по сайту: [email protected]